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Abstract. Provability logic GL is known to be complete for the set of finite,
converse well-founded, irreflexive trees. Strong completeness does not hold,
though. To obtain it, one needs to consider a slight modification of the Kripke
semantic (ω-bouquets), with the help of which one can also establish strong
completeness of GL for the order topology on ordinals ≥ ωω + 1. We show
that GL over a language with uncountably many propositional variables can-
not be strongly complete for ω-bouquets and neither for countable ordinals.
However, for each infinite cardinal κ, GL with κ variables is strongly complete
for bouquets of size κ and for the subspaces of the interval topology on κ. Ad-
ditionally, we establish the strong completeness of the logic GL.3 with respect
to ultralinear bouquets, which we introduce in the paper.
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1. Introduction

The interest in provability logic stems from the investigations of Gödel’s in-
completeness theorems. Löb [Lö55] formulated three conditions on the provability
predicate of Peano Arithmetic that form a useful modification of the conditions
that Hilbert and Bernays [HB39] introduced for their proof of Gödel’s second in-
completeness theorem. Friedman [Fri75] posed the problem of axiomatizing the
set of valid arithmetical formulæ built from expressions of the form “φ is prov-
able” by means of Boolean connectives and provability assertions. Boolos [Boo75]
(and independently Bernardi, Montagna, and van Benthem) proved that Löb’s ax-
iomatization was complete when restricting to closed (i.e., variable-free) formulæ,
building on work of Segerberg [Seg71] on the Kripke semantics of Löb’s logic GL.
Solovay [Sol76] later extended Boolos’ theorem to a completeness theorem of GL
for its arithmetical interpretation.

Date: September 29, 2025 (compiled).
1



2 GRIGORII STEPANOV

Although arithmetical completeness is a crucial fact to show that GL is ‘the’ logic
of provability, we need completeness with respect to some simpler models to be able
to work with GL. GL is known to be Kripke complete with respect to the class of
finite irreflexive trees and topologically complete with respect to any ordinal ≥ωω
with its order topology. Things get trickier if we are to ask if there is a model in a
given class that (locally) satisfies a given set of formulæ consistent with the logic,
if the answer is positive, we say that the logic has the strong completeness property
with respect to the class of models. It is known that the strong Kripke completeness
fails for GL and holds for scattered topological spaces (in fact one can restrict to
the countable ordinals with their order topology), GL is also known to be strongly
complete with respect to ω-bouquet, who are topological structures reminiscent to
Kripke frames.

We consider a modal language with uncountably many variables. This allows to
consider sets of formulæ of uncountable sizes. If κ is a cardinal we say that GLκ is
the logic with the same set of axiom schemata as GL over the language with κ-many
variables. We show that the strong completeness for this logic fails with respect
to countable models fails (both ω-bouquets and ordinals), moreover it fails for the
ordinal spaces in general.

We shall prove:

Theorem A.
(1) GLκ is not strongly complete with respect to the order topology on ordinals

for any uncountable λ-bouquet for each λ < κ.

(2) GLκ is not strongly complete w.r.t. order topology on ordinals for any un-
countable κ.

However, we show:

Theorem B. For each κ > ℵ0

(1) GLκ is strongly complete with respect to the class of κ-bouquets.

(2) GLκ is strongly complete with respect to the subsets of κ + 1, i.e. with the
class

{(K, τK) : κ ∈ K ⊂ κ+ 1, τK = {U ∩K : U ∈ τι}},
where τι is the order topology on Ord.

Theorem A warrants the restrictions in Theorem B, showing that the statement
is the strongest we can get.

Another result we present here is that GL is strongly complete with ω-bouquets
and countable ordinals of a chosen size, namely

Theorem C. Let α be a countable ordinal and let Γ be a non-degenerate (i.e.
consistent with ♢n⊤ for each n) set of formulæ consistent with GL, then

(1) there is an ω-bouquet with rank α which satisfies Γ;
(2) there is a valuation v : P (ωα + 1) → var, such that (ωα + 1, ωα) ⊩v Γ;

GL.3 is an extension of the logic GL obtained by adding the axiom schema .3 =
□(□φ→ ψ)∨ (□ψ∧ψ → φ). This logic was studied by Solovay, who shown that it
is complete with respect to the set theoretic interpretation, where □φ is interpreted
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as “φ holds in all transitive models of ZFC”. GL.3 is Kripke complete with respect
to the set of finite strict linear orders, however the strong completeness fails akin to
the GL case. Aguilera and Pakhomov [AP25] obtained set-theoretic completeness
for the polymodal generalization GLP.3 and Aguilera with the author found new
natural topological models that give completeness to GL.3 [AS24a]. We employ the
machinery used for results about GLκ to obtain similar strong completeness results
for GL.3κ. We work with trees where each node can only have infinitely many,
one or zero immediate successors, and for evaluation of modal formulæ we fix an
ultrafilter instead of the cobounded filter (see Definition 10). We call such models
ultralinear κ-bouquets. We prove the following:

Theorem D.
(1) Let Γ be a consistent set of GL.3κ formulæ, then there is an ultralinear

κ-bouqet (B,<) with a valuation v : varκ → P (B) and the root r such that
B, r ⊩v Γ.

(2) Let Γ be a consistent set of GL.3-formula, such that ♢n⊤ ∈ Γ for every n,
then for each countable ordinal α there is an ultralinear ω-bouquet (B,<)
with the root r of rank α and a valuation v : var → P (B) such that B, r ⊩v
Γ.

In this article we do not focus on building ordinal spaces for GL.3, since it requires
a different machinery and in fact is a subject of our different work [AS24a]. However
in order for this overview to be complete, we state the result as well:

Fact 1 (Aguilera, S.).
(1) Assume V = L[U ], where U is an infinite set of normal measures, such that

for each n, there is a measure of Mitchell order n, then GL.3 is complete
with respect to the normal topology on Ord.

(2) Assume ZF + AD, then GL.3 is complete with respect to the club topology
on Ord.

2. Preliminaries

2.1. Kripke semantics. For a cardinal κ we define the following modal language:

Lκ = p | φ ∧ ψ | ¬φ | □φ
where p ∈ varκ and φ,ψ ∈ Lκ and varκ is a set of propositional variables with
|varκ| = κ. 1

Definition 2. Logic GLκ is the minimal set of Lκ-formulæ closed under modus
ponens and Nec and containing the following axioms:

(1) classical tautologies;
(2) □(φ→ ψ) → (□φ→ □ψ);
(3) □(□φ→ φ) → □φ;

We write GL for GLω.

Definition 3. Kripke frame is a tuple F = ⟨W,<⟩, where W is a set and <⊂
W × W . Given a Kripke frame F and a function v : varκ → PW , we say that
M = ⟨F, v⟩ is a Kripke model, which yields the following interpretation J·K of the
modal formulæ:

1One can additionally assume varκ ⊂ Hκ, i.e. each variable is hereditarily smaller than κ.
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• J⊥K = ∅;
• JpK = v(p), where p ∈ varκ;
• Jφ ∧ ψK = JφK ∩ JψK;
• J¬φK =W \ JφK;
• J♢φK = {x : ∃y(x < y ∧ y ∈ JφK)};

Conventionally, □φ = ¬♢¬φ. We say that a formula φ holds at a point x in a
model M if x ∈ JφK, in which case we write M,x ⊩ φ. We write M ⊩ φ to mean
M,x ⊩ φ for some x ∈M and M |= φ to mean M,x ⊩ φ for all x ∈ F and F |= φ
to mean M |= φ for all models of the form M = ⟨F, v⟩ we might occasionally write
F, x ⊩v φ instead if (F, v), x ⊩ φ or even omit the index, if v is clear form the
context.

We say that a Kripke frame is a GL-frame if F |= GL, one can show that (F,<)
is a GL-frame if <-is converse well-founded, irreflexive and transitive relation on F .

Given a GL-frame F , then for each point x ∈W we assign rank ρ(x), which is 0
for each element that has no successors, and otherwise it is

ρ(x) = sup{ρ(y) + 1 : y is an immediate successor of x}.

Given a rooted tree T with the root r we let ρ(T ) = ρ(r).

Fact 4 (Segerberg). GL ⊢ φ is the logic of GL-frames, moreover GL is complete
with respect to finite irreflexive trees.

However, the following example shows that we cannot attain strong completeness
for Kripke frames. Indeed, letting

(∗) Γ = {♢p0} ∪ {□(pi → ♢pi+1) : i < ω},

one can see that Γ necessitates the model to have an infinite <-chain, thus such
model cannot be a model of GL.

2.2. Topological semantics. Despite the failure of the strong completeness for
the Kripke semantics, in [AFD17] the strong topological completeness (with respect
to countable ordinal spaces) was established via the strong topological completeness
with respect to Kripke-like structures, namely ω-bouqets. For our convenience we
introduce this notion in the topological fashion.

Definition 5. Let (X, τ) be a topological space. We let

dτ (A) = {x : ∀U ∈ τi∃y ̸= x(y ∈ U ∩A)}

for A ⊂ X, we call dτ the derivative operator, we omit the subscript τ if there is no
risk of confusion. We call (X, τ) a scattered topological space if any A ⊂ X has an
isolated point. If X is a scattered space, then the rank function rk(x) = min{α :
x /∈ dα+1X} is well-defined for all x ∈ X.

Definition 6. A topological model is a pair ⟨(X, τ), v⟩, where (X, τ) is a topological
space and v : varκ → PX, which yields the interpretation:

• JpK = v(p);
• Jφ ∧ ψK = JφK ∩ JψK;
• J¬ψK = X \ JψK;
• J♢φK = d(JφK);
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Note that J□φK = d̃(JφK) = X \d(X \JφK), in other words X,x |= □φ if and only
if there is a punctured neighborhood U of x, such that X, y |= φ for any y ∈ U .

It is known that (X, τ) validates GL if and only if (X, τ) is a scattered space. In
particular, one can construe Kripke frames as topological spaces generated by the
set of all upsets, namely all A ⊂ X such that ∀x, y(x ∈ A ∧ xRy → y ∈ A). Such
topological spaces are scattered and retain validity from the Kripke interpretation,
thus GL is complete with respect to the class of scattered spaces.

A natural type of scattered spaces is the class of ordinals with their order topol-
ogy also known as the interval topology.

Definition 7. We call order topology τι the topology on Ord generated by the
intervals (α, β) for each α < β, for γ ∈ Ord we let (γ, τι) denote (γ, {U∩γ : U ∈ τι}).
One can assume Ord = 22

κ

whenever we work with the logic GLκ.

It is known that GL is complete with respect tho the class of countable ordinals
with the interval topology, moreover it is complete with respect to a singleton:

Theorem 8 (Abashidze, Blass). Let Ω ≥ ωω, then GL is complete with respect to
the class {(Ω, τι)}.

2.3. Bouquets. Now we define κ-bouqets, which are reminiscent to Kripke frames
with a slightly different interpretation rule and ordering of the nodes. We loosen
the requirement for a Box-formula φ to be satisfied. The original definition of ω-
bouquet in [AFD17] says that if a node of the tree has ω-many successors, then it is
enough to satisfy φ at all but finitely many of them. Dually ♢φ hods if φ∨♢φ holds
at infinitely many immediate successors. We can similarly define the satisfaction
relation in the case of λ-many immediate successors. In this case we say that □φ
holds if φ∧□φ holds in a co-bounded set of the node’s immediate successors, dually
♢φ holds if φ ∨ ♢φ holds in a cofinal set of the node’s immediate successors. Note
that if we are to deal with a node with λ-many successors for a singular λ, being
cofinal is not permutation invariant. To amend this we additionally fix an explicit
enumeration of the immediate successors of each node. Moreover, one can note that
the definition can be generalized by taking some other than co-bounded filter Fλ
on λ.

Definition 9. Let X be a set and R ⊂ X is a converse well-founded tree with the
root r, for each cardinal λ, let F = {Fλ} be a class of filters on each cardinal λ.
For x ∈ X let Yx be the set of immediate successors of x and ex : Yx → |Yx| be
some bijective enumeration. For x ∈ X let Rx = R ∩ {y ∈ X : y = x ∨ xRy}2.
Then we set RF = RF

r where for each x ∈ X, RF
x is a set of relations on X, such

that A ∈ RF
x , if and only if

(1) |Yx| = n < ℵ0, Yx = {yi}i<n and for each i < n there is Ai ∈ RF
yi such that⋃

i<n{{(x, yi)} ∪Ai} ⊂ A, or
(2) |Yx| = λ ≥ ℵ0 and Yx = {yi}i<λ such that ex(yi) = i and there is D ∈ Fλ

such that for each i ∈ D there is Ai ∈ RF
yi such that

⋃
i∈D ({(x, yi)} ∪Ai) ⊂

A;

Definition 10 ((F , κ)-bouquet). Let (T,R) be a converse well-founded tree of size
κ, and let ρ : T → Ord be the rank function on T with respect to the upset topology.

We define a new topology, σF
R , to be the least topology containing every U ∈ RF

x

for each x ∈ T . We say a topological space (T, σ) is a (F , κ)-bouquet if there exists a
binary relation R on T such that (T,R) is a converse well-founded tree and σ = σF

R .
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We call a space (T, σ) a κ-bouquet if it is a (F , κ)-bouquet where F is such that
∀λ, Fλ is a cobounded filter on λ.

The number of immediate successors is called degree of the node and rank ρ(x)
of a node x ∈ T is defined inductively as ρ(x) = 0 if it has no immediate successors
and ρ(x) = sup{ρ(yα) + 1 : yα is an immediate successor of x}.

Claim 11. Let (T, σ) be an (F , κ)-bouquet, then for each x ∈ T , rkσ(x) = ρ(x)
(see Definition 5).

Proof. Note that a x is isolated in (T, σ) if and only if it has no immediate succes-
sors. Thus, a simple induction on ρ(x) proves the statement of the claim. □

Fact 12 ([AFD17]). GL is strongly complete with respect to the class of ω-bouquets.

3. Two Incompleteness Lemmata

We prove two lemmata comprise the incompleteness Theorem A, this will warrant
the statement of the later coming theorems, by showing that the strong complete-
ness cannot be attained for the so far considered models.

Lemma 13. There exists a consistent set Γ of GLκ-formulæ such that for any
ordinal λ ≤ κ for any v : varκ → λ2, (λ, τι) ̸⊩v Γ, moreover if κ is regular, then for
any λ ∈ Ord with cof (λ) < κ, (Ord, τι), λ ̸⊩ Γ.

Proof. Let
Γ = {♢p0} ∪ {□(pα → ♢pβ) : α < β < κ}.

For the sake of contradiction take δ and v : varκ → λ2, such that δ ⊩ Γ.
That is δ ∈ dv(p0) and δ ∈ d̃(v(pα)

c ∪ dv(pβ)) for each α < β < κ. Since δ ∈
d̃(v(pα)

c ∪ dv(pβ)), there is δαβ < δ such that (δαβ , δ) ⊂ v(pα)
c ∪ dv(pβ). We let

F : [κ]2 → λ : (α, β) 7→ δαβ . Then there is an infinite A ⊂ λ with F ([A]2) = δ′ < δ.
Let A′ = {αi}i<ω ⊂ A be increasing and γ ∈ (δ′, δ). The assumption that δ ⊩ ♢p0
implies there is β0 ∈ (δ′, δ) with rank ρ0 = ρ(β0) with β0 ⊩ p0, hence β0 ⊩ ♢pα1 .
Inductively, for each i < ω there exists βi ∈ (δ′, δ) with βi ⊩ ♢pαi , moreover
ρ(βi+1) < ρ(βi), which amounts to an infinite decreasing sequence of ordinals.

The ‘moreover’ part is proven similarly. □

Lemma 14. Let κ be an uncountable cardinal, then there is a consistent set of
GLκ-formulæ such that for any η ∈ Ord for any v : η2 → varκ, (η, τ, v) ̸⊩ Γ.

Proof. Consider the following set of GLκ-formulæ.

Γ′ = {♢p0} ∪ {□(pα → ♢pβ) : α < β < ω1}
Let Γ = Γ′∪{♢q,□□¬q}. The set is consistent with GLκ, moreover if Ord, α ⊩ Γ′

then cof (α) ≥ ω1. Now Ord, α ⊩ ♢q implies A = JqK∩α is an unbounded subset of
α, let A′ be the set of the limit points of A (i.e. β ∈ A′ if and only if supA∩β = β),
then A′ is unbounded in α and A′ ⊂ J♢qK, hence α ⊩ ♢♢q, a contradiction. □

4. Strong completeness

This section comprises a proof of Theorem B. Namely, we for a GL-consistent
set of Lκ-formulæ Γ, we show how to produce a κ-bouquet B and a subset K of
κ+ 1 with valuations v : var → P (B) and v′ : var → P (K), such that B ⊩v Γ and
K,κ ⊩v′ Γ. The proof heavily relies on the following notion:
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Definition 15. Let X,Y be topological spaces, we say that f : X → Y is a d-map
if f is open, continuous and pointwise discrete, i.e. for each y ∈ Y , the set f−1[y]
is discrete in X.

d-maps serve a role of homomorphisms between spaces with a derivative operator,
for deeper analysis see [BG14, BEG05]. What we actually need is that d-maps
preserve satisfaction if we lift a valuation via them, precisely:

Fact 16 ([BEG05]). Let X,Y be scattered spaces and let f : X → Y be a surjective
d-map. Let v : var → P (Y ) be a valuation, then for each y ∈ Y for each x ∈ X
and for any modal formula ψ, f(x) = y implies Y, y ⊩v ψ if and only if X,x ⊩v′ ψ,
where v′(p) = f−1[v(p)] whenever p ∈ var.

This gives us a convenient way to prove completeness results. If we have a class
of topological models X complete with GL and want to show completeness with
respect to the class of topological models Y, it is enough to show that for any
Y ∈ Y, there is X ∈ X and a d-maps f : X → Y . Thus if a formula ψ is consistent
with GL, it has a model Yψ ∈ Y such that Yψ ⊩v ψ for some v : var → P (Yψ),
it follows that there is a model Xψ ∈ X with a d-map f : Xψ → Yψ. Thus,
setting v′ : Vars → P (Xψ) : p 7→ f−1[v(p)], we get Xψ ⊩v′ ψ. Thus, the proof of
Theorem B is attained by showing inductively the strong completeness for the class
of κ-bouquets and showing that for any κ-bouquet B there is a subset K of κ and
a d-map f : K → B.

Although we gave a topological definition for κ-bouquets, one can construe them
as a modification of Kripke frames. The following claim states the similarity of
these structures in a precise way.

Claim 17. Given a formula θ, let (T,<) be a well-founded tree with the root r with
the corresponding (F , κ)-bouquet (T, σ) and let v : varκ → P (T ) be a valuation,
then for any x ∈ T , T, x ⊩v θ if and only if:

• θ = p ∈ var and x ∈ v(p), or
• θ = φ ∧ ψ and T, x ⊩ φ and T, x ⊩ ψ, or
• θ = ¬φ and T, x ̸⊩ φ, or
• θ = ♢φ and either

– deg(x) is finite and T, y ⊩ φ ∨ ♢φ for some immediate successor y of
x, or

– deg(x) = λ ≥ ℵ0 and the set {i < λ : i = r(y)∧T, y |= φ∨♢φ} ∈ (Fλ)
+;

or
• θ = □φ implies

– deg(x) is finite and T, y |= φ ∧ □φ for all immediate successors y of
x, or

– deg(x) = λ ≥ ℵ0 and {i < λ : i = r(y) ∧ T, y |= φ ∧□φ} ∈ Fλ;

Proof. The proof is by simultaneous induction on the formulæ complexity and the
rank of x. The statement clearly holds for Booleans and the propositional variables,
note that the statement for θ = □ψ follows from the statement for θ = ♢φ.

Assume now θ = ♢φ and x ⊩ θ for some x ∈ T . Let Y = {yi : i < λ} enumerate
all immediate successors of x according to e. For the sake of contradiction assume
{i < λ : yi |= φ∨♢φ}∩C = ∅ for some C ∈ Fλ, thus C ⊂ {i < λ : yi ⊩ ¬φ∧□¬φ}.
It follows that yi ⊩ ¬φ and there is a neighborhood Ui of yi such that Ui \ {yi} ⊂
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v(¬φ). Thus,
⋃
i∈C{yi} ∪Ui is a punctured neighborhood of y contained in v(¬φ),

thus x ⊩ □¬φ, a contradiction.
For the opposite implication, we fix an open neighborhood U of x and letting

Yφ = {i < λ : yi ⊩ φ}, Y♢φ = {i < λ : B, yi ⊩ ♢φ}
assume Yφ ∪ Y♢φ ∈ (Fλ)

+. If Yφ ∈ (Fλ)
+, then {i < λ : yi ∈ U ∧ yi ⊩ φ} ̸= ∅

and so U ∩ v(φ) ̸= ∅. If Y♢φ ∈ Fλ then letting Ui = U ∩ Ryi , by the induction
hypothesis we have Ui ∩ v(φ) ∈ (Fλ)

+ whenever i ∈ Y♢φ ∩ {i < λ : yi ∈ U}. Thus,
U ∩ v(φ) ̸= ∅. □

The next lemma is a key step for binding the strong κ-bouquet completeness
with the strong topological completeness. κ-bouquet for Γ shall be obtained by
bundling smaller bouquet who satisfy certain subsets of Γ. Thus, if we know how
to build d-maps for these smaller bouquets, we shall be able to produce the ordinal
space that embeds into the κ-bouquet.

Lemma 18. Let κ be an uncountable cardinal and let {(Bj , <j , ej)}j<κ be a se-
quence of pairwise disjoint <κ-bouquets with roots rj. For each j < κ we let
λj < κ be a limit ordinal, and λj ∈ Λj ⊂ λj + 1 be such that there is a d-map
fj : (Λj , τι) → (Bj , <j). Let (B,<, e) be a κ-bouquet such that B = {r} ∪

⋃
j<κBi,

for b1, b2 ∈ B, b1 < b2 if and only if
• b1 = r and b2 ∈ Bj for some j < κ; or
• b1, b2 ∈ Bj for some j and b1 <j b2;

and e(b) = 0 if b = r, e(b) = j if b = rj and e(b) = ej(b) is b ∈ Bj \ {rj} for some
j. Then there is κ ∈ K ⊂ κ+ 1 such that there is a d-map f : K → B.

Proof. Note that
∑
j<κ(λj + 1) = κ, let

hj : λj + 1 → κ : α 7→
∑
i<j

λj + 1 + α

be the isomorphic embedding. Note that hj : (λj+1, τι) → (λ, τι) is rank preserving
for each j < κ. Since the map is injective, it is obviously a d-map. Letting
Λ = {λ} ∪

⋃
j<κ hj [Λj ], then we set

f : α 7→

{
fj(β), α = hj(β);

r, α = κ;

Since hj , fj are d-maps for each j < κ, then clearly f is open continuous at every
point of Λ \ {λ} and for each b ∈ B \ {r}, f−1[{b}] is discrete. Note also that
f−1[{b}] = {κ}, and so f is pointwise discrete.

The last part is to check openness and continuity for the neighborhoods of κ.
Take U = (γ;κ] ∩K for some γ < κ, let i = min{j : λj > γ}, then the image is a
union f [U ] = f

[
(γ;λi] ∩K

]
∪ f

[
K \ (λi + 1)

]
. Since f

[
(γ;λi] ∩K

]
is open by the

hypothesis that fi is open, whereas f
[
K \ (λi + 1)

]
= {r} ∪

⋃
j>i Tj is open in B.

Now given a basic open neighborhood V of the root of B, then V = {r} ∪
⋃
j>i Ti

for some i < κ, thus f−1[V ] = K \ (λi + 1) is open. □

Lemma 19. Let κ be an uncountable cardinal and Γ be a maximal GL-consistent
set of Lκ-formulæ, there are

(1) κ-bouquet (B,<, e) with the root r and a valuation v : varκ → B2 such that
B, r ⊩v Γ; and
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(2) κ ∈ K ⊂ κ + 1 and a d-map f : (K, τι) → (B, σ<) with f(κ) = r, thus
K,κ ⊩v′ Γ, where v′(p) = f−1[v(p)] for each p ∈ varκ;

Proof. The proof by induction on κ. If κ = ω, then the claim follows from Fact 12.
Fix κ > ℵ0 and a maximal GL-consistent set Γ of Lκ-formulæ. Let Φ = {φ : □φ ∈
Γ} = {φi}i<κ, Ψ = {ψ : ♢ψ ∈ Γ} = {ψi}i<κ and for each ψ ∈ Ψ, the set {i < κ :
ψ = ψi} is cofinal in κ. For every i < κ we let Γ(i) = {ψi}∧{φj∧□φj}j<i whenever
i < κ, then |Γ(i)| = |i+1| < κ. One can see that for every i < κ, Γ ⊢ ♢

∧
∆ for any

finite ∆ ⊂ Γ(i), and so Γ(i) is consistent. By the induction hypothesis, there is one
|i|-bouquet (Bi, <i, vi, ei) with the root ri such that ri ⊩ Γ(i). Now let (B,<, v, e)
be a κ-bouquet with the root r such that B = r ∪

⋃
i<κBi, for b1, b2 ∈ B, b1 < b2

if and only if
• b1 = r and b2 ∈ Bi for some i; or
• b1, b2 ∈ Bi for some i and b1 <i b2;

and e(b) = ei(b) if b ∈ Bi \ {ri}, e(b) = i if b = ri and e(b) = 0 if b = r. It
is straightforward to check that B, r ⊩ Γ. Note that by the second part of the
induction hypothesis, there is |i| ∈ I ⊂ |i|+ 1 with a d-map fi : (I, τι) → (Bi, <i).
Thus, Lemma 18, there is κ ∈ K ⊂ κ + 1 and a d-map f : (K, τι) → (B, σ<) with
f(κ) = r. □

Corollary 20 (Strong completeness). Let κ be an uncountable cardinal, then GLκ

is strongly complete with respect to the class of κ-bouquets and to the class {(K, τι) :
κ ∈ K ⊂ κ+ 1}.

5. Countable bouquets

In this section we show a finer strong completeness result for GLω, namely for
each GL-consistent set of formulæ Γ and countable ordinal β we find an ω-bouquet
(T,<) with the root r and a valuation v : var → P (T ), such that (T,<), r ⊩v Γ and
a valuation ν : var → P (ωβ + 1) such that (ωβ + 1, τι), ω

β ⊩ν Γ

Definition 21. Let β be a countable ordinal. We call an ω-bouquet (T,<) a
(ω, β)-bouquet if the rank of its root r is β.

Lemma 22. Let Γ be a consistent set of GL-formulæ such that {♢n⊤ : n < ω} ⊂ Γ
and let α be a countable ordinal, then there are

(1) an (ω, α)-bouquet (T,<) with the root r and a valuation v : var → T 2, such
that (T,<), r ⊩v Γ;

(2) a sujective d-map j : ωα + 1 → T such that j(ωα) = r;

Proof. The proof is by induction on α. If α = ω the statement follows from Fact 12.
Let α = β + 1. Take Γω = {ψi ∨ ♢ψi}i<ω ∪ {φi ∧□φi}i<ω. If Γω is consistent and
{♢k⊤ : k < ω} ⊂ Γω, then we can apply the induction hypothesis on β to Γω and
get an (ω, β)-bouquet (Tβ , <β) with the root rβ and a valuation vβ : var → Tβ2,
such that (Tβ , <β), rβ ⊩vβ Γω. Then letting T = {r} ∪ Tβ , < be such that for all
x, y ∈ T , x < y if x, y ∈ Tβ and x <β y or x = r and y ∈ Tβ and for all p ∈ var,
v(p) = vβ(p) ∪ {r : p ∈ Γ}, we have an (ω, β)-bouquet (T,<) with the root r and
a valuation v : var → T 2, such that (T,<), r ⊩v Γ. Hence, it is left to prove the
following claim.

Claim 23. Γω is consistent and contains {♢k⊤ : k < ω}.
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Proof. Since for any k, ♢k+1⊤ ∈ Γ it follows that ♢k⊤ ∨ ♢k+1 ∈ Γω, which proves
the former and the latter statements. As for consistency, we show that any finite
Γ′ ⊂ Γω is consistent from the fact that Γ ⊢ ♢

∧
Γ′. Assume that Γ ⊢ □

∨
¬Γ′.

Note that Γ ⊢ □φi, Γ ⊢ □□φi for each i < ω. Then, Γ ⊢ □
∧
φi∧□φi∈Γ′(φi ∧ □φi)

let ∆1 = {φi ∧ □φi}φi∧□φi∈Γ′ and ∆2 = {φi ∨ ♢ψi}ψi∨♢ψi∈Γ′ , then Γ ⊢ □
∧

∆1

and Γ ⊢ □(
∨
¬∆1 ∨

∨
¬∆2), which results to Γ ⊢ ¬♢(

∧
∆2), which contradicts

consistency of Γ. □

This proves (1) for successor steps.
Now, by (2) of the induction hypothesis we have a d-map jβ : ωβ +1 → Tβ . Fix

a cofinal in ωβ sequence ⟨δi⟩i<ω and define j : ωα + 1 → T by

j(x) =

{
jβ(δi + α), x = ωβ · i+ 1 + α, α ≤ ωβ , i < ω;

r, x = ωα;

Since jβ is a d-map, each open neighborhood of x ∈ Tβ is open in (ωα + 1, τι), as
well as each open neighborhood of γ < ωα is open in T , moreover j is pointwise
disctrete which follow from jβ being pointwise discrete and j−1[{r}] = {ωα}. Now
note that if V ⊂ T is a neighborhood of r in B, then it is of the form {r} ∪ U
where U is a neighborhood of rβ – the root of Tβ . j−1

β [U ] contains (δ;ωβ ] for some
δ < ωβ . Since {δi}i<ω is cofinal in ωβ , there is n, such that δi > δ for all i > n.
Hence, (δn+1;ω

α) ⊂ j−1[U ] and (δn+1;ω
α] ⊂ j−1[V ]. Now if one take an open basic

neighborhood of ωα given by (δ, ωα] for some δ < ωα, then {r} ∪ U ⊂ j[(δ, ωα]] for
some U open in Tβ . Hence j is indeed a d-map

If α is limit, we fix a cofinal sequence {αn}n<ω. For each n < ω we set Γ(n) =
{ψn} ∪ {φi ∧□φi}i<n, for each n < ω, Γ(n) is consistent. Let Γ′(n) be a maximal
consistent extension with {♢k⊤ : k < ω} ⊂ Γ′(n) if {♢k⊤ : k < ω} is consistent
with Γ(n) and some maximal consistent extension otherwise. Let N = {n < ω :
{♢i⊤ : i < ω} is consistent with Γ(n)}.

Claim 24. The set N is infinite.

Proof. Fix n, l ≤ ω and assume that

GL ⊢ ψn ∧
∧
i≤n

φi ∧□φi → □l⊥

GL ⊢ □(ψn ∧
∧
i≤n

φi ∧□φi → □l⊥)

GL ⊢ □(ψn ∧
∧
i≤n

φi ∧□φi) → □l+1⊥

now since ♢l+1⊤ ∈ Γ it follows that ♢(¬ψn ∨
∨
i≤n ¬φi) ∈ Γ. By construction,

□φi ∈ Γ for each i < ω, it follows ♢¬ψi ∈ Γ, then ¬ψi = ψm for some m < ω. We
claim that Γ(m) is consistent with {♢k⊤ : k < ω}, otherwise for some k

GL ⊢ ψm ∧
∧
i≤m

φi ∧□φi → □k⊥

GL ⊢ ¬ψi ∧
∧
i≤m

(φi ∧□φi) → □k⊥



STRONG TOPOLOGICAL COMPLETENESS OF GL BEYOND ω 11

it follows then that
GL ⊢

∧
i≤n′

(φi ∧□φi) → □l
′
⊥

GL ⊢
∧
i≤n′

(□φi ∧□□φi) → □l+1⊥

for n′ = max(n,m) and l′ = max(l, k), then □l
′+1 ∈ Γ, a contradiction. Thus,

there are infinitely many n such that Γ(n) is consistent with {♢k⊤ : k < ω}. □

Let N = {ni : i < ω} be the order preserving enumeration of N . For each n < ω
we let (Tn, <n, vn) be an (ω, αi)-bouquet with the root rn such that Tn, rn ⊩ Γ(n)
if there is i such that ni = n and (Tn, <n, vn) be some bouquet with the root rn
such that Tn, rn ⊩ Γ(n) otherwise.

We let (T,<, v) be the (ω, α)-bouquet with the root r, where T = {r} ∪
⋃
n Tn

such that for each x, y ∈ T , x < y if there is n such that x, y ∈ Tn and x <n y or
x = r and for each p ∈ var we set v(p) = {r : p ∈ Γ} ∪

⋃
n vn(p). One can see that

T, r ⊩v Γ.
Similarly, from (2) of the induction hypothesis, there is a d-map jn : Tn → ωβn+1

for each n, moreover if there is i such that n = ni, then βn = αi and βn < α
otherwise. Hence

∑
n ω

βn = ωα. Now we define the map j : ωα+1 → T as follows:

j(γ) =

{
jn(δ) γ =

∑
k<n ω

βk + 1 + δ, δ ≤ ωβn

r, γ = ωα;

The proof that j is a d-map is the same as for the case of α being successor. □

Corollary 25. For each countable β, GL+ {♢k⊤ : k < ω} is locally complete with
respect to:

(1) the class (ω, β)-bouqets;
(2) the class {(ωβ + 1, τι)};

6. The logic GL.3

We introduced the notion of bouquet relativized to the filter we use to evaluate
validity of modal formulæ in the nodes with infinite degree, however the main
results employed only bouquets with cobounded filters. In this section we make use
ultrafilters instead to obtain the strong completeness of GL.3. Note that without
the Axiom of Choice there may be no non-principle ultrafilters on ω, so the results
in this section are independent of ZF.

Definition 26. The logic GL.3 is the minimal set of formulæ closed under modus
ponens and containing GL+□(□φ→ ψ) ∨□(□ψ ∧ ψ → φ).

Fact 27. GL.3 is sound and complete with respect to the class of finite strict linear
orders or lines.

Claim 28. GL.3 is not strongly complete with respect to the class of finite strict
linear orders.

Proof. See Example (∗). □

In the light of last claim we introduce semantics which is a modification of the
notion of bouquet.
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Definition 29. We call a (F , κ)-bouquet B linear if each node of the underlying
tree has zero, one or infinitely many immediate successors. If additionally each
F ∈ F is a non-principal ultrafilter, we call such bouquet an ultralinear κ-bouquet.

Note that we do nor write ‘ultralinear (F , κ)-bouquet‘, since the following proofs
do only rely on the fact that the filters are non-principal ultrafilters.

Lemma 30. The logic GL.3 is sound with respect to the class of ultralinear κ-
bouquets.

Proof. GL is obviously sound, since a refinement of a scattered space is scattered.
We have to show that B |= □(□φ → ψ) ∨ □(□ψ ∧ ψ → φ) whenever B is an
ultralinear ω-bouquet. From here on we reason by induction on the rank of the
node x ∈ B (see Definition 10).

Case I. x has one immediate successor y and by the induction hypothesis on y
we have the following cases:

(1) y ⊩ □(□φ→ ψ) and y ⊩ ¬□φ;
(2) y ⊩ □(□φ→ ψ) and y ⊩ □φ and y ⊩ ψ;
(3) y ⊩ □(□φ→ ψ) and y ⊩ □φ and y ⊩ ¬ψ;
(4) y ⊩ □(□ψ ∧ ψ → φ) and y ⊩ ¬□ψ ∨ ¬ψ;
(5) y ⊩ □(□ψ ∧ ψ → φ) and y ⊩ □ψ ∧ ψ and y ⊩ φ;
(6) y ⊩ □(□ψ ∧ ψ → φ) and y ⊩ □ψ ∧ ψ and y ⊩ ¬φ;

One can see that in cases (1), (2), (6) x ⊩ □(□φ→ ψ) and otherwise x ⊩ □(□ψ ∧
ψ → φ).

Case II. x has λ-many successors {yi}i<λ where λ ≤ κ. The same case distinction
on yi for Uλ-a.e. i completes the argument.

□

As was mentioned before, GL.3 is complete with respect to the set of strict finite
linear orders, thus each frame is of the form (n,<), where < is the strict ordering
of the natural numbers.

Theorem 31. The logic GL.3 is strongly complete with respect to the class of ul-
tralinear ω-bouquets.

Proof. Let Γ be (without loss of generality maximal) GL.3 consistent set of formulæ.
We let ⟨φi⟩i<ω enumerate all formulæ φ such that □φ ∈ Γ and ⟨ψi⟩i<ω enumerate
all formulæ ψ such that ♢ψ ∈ Γ, let Γ(n) = {φi∧□φi}i<n∪{ψi∨♢ψi}i<n, whenever
n < ω.

Claim 32. Γ(n) is consistent with GL.3.

Proof. Assume it is not, then

GL.3 ⊢
∧
i<n

φi ∧□φi →
∨
i<n

¬ψi ∧□¬ψi.

Applying normality and transitivity, we get

GL.3 ⊢
∧
i<n

□φi → □
∨
i<n

¬ψi ∧□¬ψi.

Trivially,
GL.3 ⊢

∧
i<n

♢ψi →
∧
i<n

♢ψi
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Combining, we get

GL.3 ⊢
∧
i<n

♢ψi ∧
∧
i<n

□φi →
∧
i<n

♢ψi ∧□
∨
i<n

¬ψi ∧□¬ψi.

The antecedent belongs to Γ, a contradiction. □

Now that Γ(n) is consistent for each n < ω, there is a valuation vn : var → P (n)
such that (n,<, vn), 0 ⊩ Γ(n), we let (Ln, <n, νn) to be a copy of (n,<, vn) for
each n with rn being a copy of 0. We define L to be an ultralinear bouquet with
the root r by letting L = {r} ∪

⋃
n Ln and for each x, y ∈ L, we set x < y if

x, y ∈ Ln for some n and x <n y or x = r and y ̸= r, and for each p ∈ var,
v(p) = {r : p ∈ Γ}∪

⋃
n vn(p). Now, if we apply Claim 17 to ultrafilters, we can see

that r ⊩ □θ if and only if rn ⊩ θ ∧ □θ for almost all n and r ⊩ ♢θ if and only if
rn ⊩ θ ∨ ♢θ for almost all n. Thus, it is easy to see that L, r ⊩v Γ. □

Claim 33. It is consistent with ZF, that GL.3 is not strongly complete with respect
to the class of linear ({U}, ω)-bouquets for any filter U on ω.

Proof. It is consistent with ZF that there is no non-principal ultrafilters on ω,
thence U is either principle or not an ultrafilter. The former case is clear by
Claim.. Gδ. Whereas the latter case means that there is a B ⊂ ω such that B /∈ U
and for any A ∈ U , B ∩ A ̸= ∅ (a set of positive measure but not measure one).
We build a bouquet (T,<, v) as follows. We define a model (T,<, v) as follows.
Let T = {r} ∪ {ai : i < ω} and for each x, y ∈ T , we put x < y whenever
x = r and y = ai for some i and let v be such that v(p) = {ai : i ∈ B}. Then
T, r ⊩v □□⊥ ∧ ♢p ∧ ♢¬p, which is inconsistent with GL.3. □

Now we state theorems similar to those in Section 4. Letting similarly GL.3κ be
the logic GL.3 over κ many variables.

Theorem 34. GL.3κ is strongly complete with respect to the class of ultralinear
(U , κ)-bouquets with U = {Uλ : λ ≤ κ ∧ λ is a cardinal}, where Uλ is an ultrafilter
on λ.

Likewise, for a given countable ordinal β, we say that B is an ultralinear
{{U}, ω, β}-bouquet, if it is a {{U}, ω}-bouquet and the rank of the root is β.

Theorem 35. For each countable β, GL+ {♢k⊤ : k < ω} is locally complete with
respect to:

(1) the class (ω, β)-bouqets;
(2) the class {(ωβ + 1, τι)};

The proofs for these two theorems are exactly as in Section 4.

Note also that in the current section we do not provide any results regarding
ordinal completness, because if we were to pullback the ultralinear topology to the
ordinals, it wouldn’t correspond to any natural topology on ordinals. However in
[AS24b] the author and Aguilera present some nice completness results regarding
the measurable topology and the club topology.
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7. Cardinal Characteristics

In this section we want to point out an interesting observation regarding the
strong completeness and set theory.

Definition 36. By [ω]ω we denote the set of all infinite subsets of ω. We call
A ⊂ [ω]ω an almost disjoint family if for any a, b ∈ A, the set a∩ b is finite, we call
an almost disjoint family A maximal, if for any c ∈ [ω]ω, there is a ∈ A such that
c ∩ a is infinite. We let

a = min{|A| : A is an almost disjoint family}

to be the almost disjointness number.

It is well known, that the cardinality of ω1 ≤ a ≤ c, where c is the cardinlaity
of the continuum. Moreover, the precise size of a is independent from ZFC, namely
there are models of ZFC with a having different size.

Let now Lωα be the closure of Lω over conjunctions and disjunctions of length α.
Let B be the class of all ω-bouquets.

Proposition 37. If α is an uncountable cardinal, then the Lωα-logic of ω-bouquets
is undecidable in ZFC, i.e. there is a Lωα-formula φ, such that ZFC cannot prove or
refute that ∀B ∈ B, B |= φ.

Proof. First, we note that the formula

φ0 = □□⊥ ∧
∧
i<α

♢pi ∧
∧

i<j<α

¬♢(pi ∧ pi)

is satisfied at the root of an ω-bouquet, the bouquet is of the form {r}∪{xk : k < ω}
and r < xk for all k and the set {v(pi) : i < α} is an almost disjoint family. Now
we want to force it to be maximal. We want to say that no v(q) with r ⊩ ♢q, can
be almost disjoint from v(pi) whenever i < α. Here we need an infinite disjunction

φ1 =
∨
i<α

¬♢(pi ∧ q)

Thus if there is a maximal disjoint family of size α, then there is B ∈ B and
v : Vars → P (B) such that B, r ⊩v φ0∧φ1 and if there no such family, then φ0∧φ1

cannot be satisfied at any ω-bouquet. □

Although the result is quite straightforward, we want to address the following
question:

Question 38. Is there a natural non-classical (e.g. intutionistic or many-valued)
version of the logic GL, whose strong completeness with respect to some sensible
generalization of the class of ω-bouquets is undecidable by ZFC?
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