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1. EXTENDERS

Definition 1. Let k < A and suppose that M is transitive and rudimentarily
closed. We call E a (k, \)-extender over M iff there is a nontrivial Yp-elementary
embedding j : M — N, with N transitive and rudimentarily closed, such that
k = crit(j), A < j(k), and

E= {(a,x) caeNUAzClr]lY Az e M/\aej(x)}.
We say in this case that E is derived from j, and write x = crit(E), A = lh(E).

We have compatibility, normality and each F, is a normal x-complete ultrafilter.
Given an extender E then Ult(M, E) is constructed by setting
(a, f) ~ (b,g) <= {we K" fouun(u) = ghan(w)} € Eap

then the element of the model are corresponding classes of equivalence [a, f]¥ with

[a, [ € 0,9l = {u €[5 fa.ap(u) € goaun(u)} € Eaup
If M | AC then Lo§’s theorem hold for 3 formulee, that is, given ¢ a Xy formula

Ult(M7 E) ': 90([0‘17 fl]a AR [an7 an
iff.
{uelr]: M E o((f)are(), -, (fa)an,c(w)} € Ec

where ¢ = [Ja;. Hence, the canonical embedding possesses X1-elementarity, where
the canonical embedding i¥ : M — Ult(M, E) :  + [{0}, c,] with ¢, : [5]' — M :
U .

Given a (k, A)-pre-extender over M and £ < A we set E|{ = {(a,z) € E : a C
¢}. Then we can define a natural embedding a([a,f]%g) = [a, f1¥. We call ¢ a

generator of E if £ = CRIT(0), that is £ # [a, f]¥ for all f € M and a C €.
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Definition 2. Given F is a (k, A)-pre-extender over M, then
v(E) =sup(k™ U {€ +1: ¢ is a generator of E})

we call v(F) the support of E.

2. POTENTIAL PRE-MOUSE AND THEIR FINE STRUCTURE

Now we specify some desired properties of extenders to procreate mice.
We work with the J hierarchy

TO DEFINE

with JE = J2, where A = {(8,2) : z € Eg}.

Definition 3. A set A is acceptable at « iff.
VB < aVk((P(x) N (T \JA) £ 0) = Jiy E 174 < #)

If A is acceptable in @ and J2 E»kT exists«, thenx JZ =»P(k) exists and
P(k) C J% «, hence GCH holds there.

Let E be a pre-extender over M, and M E»kt exists«, where k = CRIT(E).
Let v = v(E) and n = (v7)VME) is in the wip of Ult(M, E). Now let E* be the
(k,n)-pre-extender of derived from E. Then v = v(E*), so that Elv = E*|v and
the pre-extenders are equivalent. We call E* the trivial completion of E. And we
index FE as 7.

We shall use another technical concept. Let E be an extender over M. We say
that it is of type Z if v(E) = A + 1 for some limit A such that A = v(F|\) and
(AT)URQLE) — (\H)URMLEIN) T this case E* as well as (E|\)* shall be indexed
as at the same place. Hence we do not allow E to be of type Z.

Definition 4. A fine extender sequence is a sequence E such that for each a €
domE, E is acceptable in o and either E, = () or E, is (k, a)-pre-extender over
Jf for some k such that Jf E»rt exists«, amd:
(1) E, is the trivial completion of E,|v(E,), and hence o = (v(E,)*)V1Ha o)
and F, is not of a type Z.
(2) (Coherence) i(EM)\a = E|r and Z(E|l€)a = (), where i : Jf — Ult(Jf,Ea)
is the canonical embedding, and )
(3) (Closure under initial segment) for any n such that (Iﬂ+)‘]f <n < v(E,),
n=v(E4|n), and E,|v is not of type Z, one of the things holds:
(a) there is a v < « such that E, is the trivial completion of E,|n, or

(b) E,, # 0 and letting j : Jf — Ult(Jf,E,,) be canonical embedding

and g = CRIT(j), there is a v < « such that j(E|u)7 is the trivial
completion of E,|v.

Definition 5. A potential premouse (or ppm) is a structure of the form (Jf, €
.E|a, E,), where E is a fine extender sequence. We use JZ to denote this structure.

Definition 6. Let M = Jf be a ppm. We say that M is active if E, # 0, and
passive otherwise. If it is passive, then we say v = v(E,) and k = CRIT(E,), we
say it is type I if v = (k)M is type I1 if v is a successor ordinal and is type III if v

is a limit ordinal > (k)M.
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Definition 7. A structure (M, €, Ay, As,...) is amenable if
VX € MVi(A; Nz e M)

We want amenability to be satisfied. We can do it by encoding E,, as Ef is a
set of quadruples (v, ¢, a, x) such that

(W(Ea) <7 < @) A (CRIT(E,) < € < CRIT(E,))’%)
A Ea N ([V(Ea)]<Y x JE) A((a,2) € (Ba N (]S x JE)))
This makes the structure (Jf .€, E|a, E¢) amenable.

Codes and projecta.

Definition 8. L is the language of set theory with additional constant symbols
i, 7,7y, and additional unary predicate symbols E and F'.

If M is active, then we set

™ = criT(E,)
If M is active of a type II, then there is the longest non-type-Z initial segment F’
of E, containing properly less information than F,, itself, and we let ¥ determine
where F' appears on E or an ultrapower of E. More precisely we set

~J(Ba| M =1))* , if ()*is not type Z
) (Balv(Eo|(vM — 1)) —1)* , otherwise

v = the unique § with E; = F
if no such then n = v(F), which we have by the definition of 3b

Definition 9. Let M = Jf be a ppm; then the X code M or Cop(M) is the
L-structure given by:
(1) if M is passive then N has universe Jf, EN = Ela, FN =0, and ;N =
N =4N =0; )
(2) if M is active of types I or II, then N has universe JE EN = Ea, FN =
E* (where E* is the amenable coding of E, ), and ,uN =M, N =M
and AN = M )
(3) if M is active type 111, then letting v = V( E.),N has universe JZ, EN =
Elv, FN = Eulv, iV = pM, and oV =4V =0,

Definition 10. Let M be a ppm; then we call the least ordinal a such that there
is some El"( ) subset A C a with A ¢ Co(M), the ¥ projectum of M or pi(M).
(In particular p; (M) < Ord N Cy(M).)

Notice that the new set A may not be (lightface) ¥;-definable. Since there is a
ZfO(M) map from the class of finite sets of ordinals onto Co(M), we can take the
parameter from which A is defined to be a finite set of ordinals. We standardize

the parameter by minimizing it in a certain wellorder.

Definition 11. A parameter is a finite sequence (ay, ..., ay) of ordinals such that
ap > -+ > ap (and could be empty). If M is a ppm, then the first standard
parameter of M, or p;(M), is the lexicographically least parameter p such that

there is a E(f"(M)({p}) set A such that (AN p;(M)) & Co(M)
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Definition 12. (1) For any £ structure Q and set X C |Q|, HZ(X) is the
transitive collapse of the substructure of @ whose consists of all y € |Q)],
such that {y} is ¥ definable from parameters in X.
(2) for any ppm M, the first core of M, C1(M), is defined by: Ci(M) =
i (01 (M) U {pr(M)}).

For C1(M) exists N, such that Co(N) = C1(M). Tt follows from C;(M) <y,
Co(M) and saying »I am a code« is Ily, hence downwards absolute.

Definition 13. Let M be a ppm.
(1) We say that p;(M) is universal if whenever A C p; (M) and A € Co(M),
then A € C1(M);
(2) Let p1(M) = (ao, ..., an). We say that p; (M) is 1-solid if whenever i <n
and A is EfO(M)({ao, ooy 0i—1}), then ANa; € Co(M);
(3) We say that M 1-solid just in case p; (M) is 1-solid and 1-universal;

Lemma 14. If N is such that C{(M) = Co(N) and pi(M) is universal, then
p1(M) = p1(N) and the image of p1(M) under transitive collapse is p1(N).

Proof. Let r be the image of p; (M) under transitive collapse. First, if a < p1(M)
then o < pq(N) and hence p1 (M) < p1(N). Now consider s <jex 1, if A is definable
over Co(N), by minimality of p1(M) is in Co(M), hence in Co(N).

Moreover, as the collapse is identity on p;(M), r defines a new 3; subset of

p1(M) over Co(N), hence p1(N) < p1(M) and p1(N) <jex 7. O

The 1-solidity of p;(M) is important in showing that i (p;(M)) = p1(Q) for
certain ultrapower embeddings i : M — Q.

Lemma 15. Let Co(M) be a ppm with pi(M) < Ord™. If r is 1-solid, then
7 <lex p= pl(M)

Proof. Let p = {ap,...,ay) and r = (B, ..., Bn). Suppose p < r. Let d be the first
disagreement of p and r, i.e. a; = §; for i < d and ag < B4. Or d = n + 1, then

r is an end extension. Using this fact any A which is ZfO(M)({BO, oy Ba—1}) does
not define any new set A with S5 N A ¢ Co(M). O

Inductively we can define n-projecta, soundness, solidity.
So,

Definition 16. Let M be a ppm; then M is w-solid iff. M is n-solid for all n < w,
and M is w-sound iff. M is n-sound for all n < w. If M is w-solid, then we let
pw(M) be the eventual value of p, (M) and C,(M) the eventual value of C,,(M)
as n — w.

Definition 17. Let M = Jf be a ppm, let 8 < a; we write jé\’l for jﬁ‘?. Then
N is an initial segment iff. 38 < a(N = JBM)
We call ppm a coded premouse if all its initial segments are w-sound.

Definition 18. Let E be a (k, A)-extender over Co(M); then we say that FE is close
to Co(M) iff. for every a € [\]<¥

(1) E, is X;i-definable over Co(M) form parameter, and

(2) if €Co(M) and Co(M) = |A| < &, then E, N A € Co(M);
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Fine structure and Ultrapowers. So far the construction of ultrapower could
only guarantee us Xj-elementarity. If M is active, n-sound and CRIT(E) < p, (M),
then we can generate a stronger ultrapower of M, one for which f.0§’s theorem holds
for r¥, formule. Roughly speaking, one allowed to use rX,-definable functions
with parameters from Co(M). Since CRIT(E) < p, (M), we can say that E measures
enough sets for such an embedding.

Definition 19. Let 7 : Co(M) — Co(N) and let n < w. We call 7 an n-embedding
if

(1) M and N are n-sound;

(2) 7 is r¥,-elementary;

(3) m(pi(M)) = pi(N) for all i < n;

(4) T(p(M)) = pi(N) for all i < n and sup(e[pn(M)]) = pu(A);
We call m an w-embedding if it is fully elementary, it preserves projecta and pa-
rameters.

Lemma 20. For all n < w canonical embedding associated with n-th ultrapower is
an n-embedding.

Corollary 21. Let M be a premouse. And let E be a (k,\)-extender over
Co(M), which is close to Co(M) with k < pp(M). Let N be such that Co(N) =
Ult,, (Co(M), E), M is n-sound and (n + 1)-solid, and p,11(M) < k, then N is

n-sound but not (n + 1)-sound.

3. ITERATION TREES

Now given a k-sound premouse and 6 is an ordinal, we define the iteration game

Definition 22. A tree order on « is a strict partial order T of o with least element
0 such that for all v < «:
(1) BTy = B <~
(2) {B: BT~} is wellordered by T
(3) ~v is a successor ordinal <= ~ is a T-successor, and
(4) ~y is a limit ordinal = {8 : Ty} is cofinal in 7.
If T is a tree order then

B:Ar={n:n=pVEInTyVn=n~}
we say that premice M and N agree below - iff. jﬂM j for all g < ~.

The Game. Players are given a tree T' of order 6, a premice M, for a < 6 with
My = M, an extender F, form the M, sequence, and a set D C 6 and embedding
ia,8: Co(Mqy) — Co(Mp) defined whenever oI5 and D N («; B)r = 0.

The rules guarantee that o < § = M, agrees with Mg below 1h(F,) and
a < f = lh(F,) is a cardinal of Mg (see the proof later).

At move « + 1 the player I picks an extender F,, from the M, with Ih(F¢) <
Ih(F,) for all £ < « (if they cannot, the game is over and they loses). Now let
B < a be the least such that CRIT(F,) < v(Fg). Let now

= jﬂf\/lﬁ, where + is the largest 7, such that

. M
I, is a pre-extender over Jy p
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Our agreement hypothesis imply that ~ exists, 1h(F) < =, and F, is a pre-
Mg
extender over Co(Jy 7).

Proof. 1t is clear if § = a. Let now < a and x = CRIT(F,). Having lh(F3) <
Ih(F,) and 1h(Fj) being a cardinal if M,.

Mf @
P(5) 0 Ty = P8) N Ma = P(5) 0 Tiy (i,

O

Then we put a + 1 € D iff. M}, |, is a proper initial segment of Mg.
Len now n < w be the largest that: 1) CRITF, < p, (M, ) and 2) if DN[0;a+
17 = 0, then n < k, we set

Masr = UM, 1, Fo)

if it is well-defined, otherwise II has lost. Finally we let 8T (a+1), and if 41 ¢ D,
then ig o41: Co(Mp) = Co(Mqy41) is the canonical ultrapower embedding.

It can be shown that the hypothesis is retained.

Player II acts on limits by picking a cofinal (in A) well-founded branch, that it
Db is bounded in A and the limit (in end-segment) is well-founded. Then we set
M., and embedding i, for all a € b\ supb.

If they reach 0, player II wins.

Definition 23. A k-mazimal iteration tree on M is a partial play of the game
Gr (M, 0) in which neither player has yet lost.

Lemma 24. Let T be an iteration tree, and let « +1 < 1h(T); then E, is close to
atl:

Definition 25. If 7 is an iteration tree with models M, and extenders E,,

and a4+ 1 < 1h(7), then deg” (o + 1) is the largest n < wsuch that Mgy =

Ult,, (MZ;H, Ea). Also, we use ZZTH for the canonical embedding from M}, into
this ultrapower.

Definition 26. A (k,0)-iteration strategy for M is a winning strategy for II in
Gr(M, 0). We say M is (k,0)-iterable iff. there is such a strategy.

Comparison.

Definition 27. 3.10 Definition. A branch b of the iteration tree 7 drops (in model
or degree) iff DT Nb # () or deg” (b) < deg” (0).

Theorem 28 (The Comparison Lemma). Let M and N be k-sound premice of
size < 0, and suppose that ¥ and T' are (k, 07 + 1)-iteration strategies for M and
N respectively; then there are iteration trees T and U played according to X and T';
and having last models ./\/lz: and ./\/ZI’{ such that either

(1) [0,a]r does not drop in model or degree, and MY is an initial segment of

n )
(2) or vice versa;

Corollary 29. Let M and N be w-sound (w,wy + 1)-iterable premice such that
Pw(M) = py(N) = w; then M is an initial segment of N, or vice-versa.
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Proof. By comparison Lemma we have trees 7,4 and w.lo.g. M7 <1./\/'ff. Then
for no extender CRIT(E) < p,, (M), hence [0, ] does not drop iff. a« =0. If >0
then N é” is not w-sound. Thus, M is a proper initial segment, which is countable

in NY, hence M is a proper initial segment of N, since iteration does not produce
new reals. |

Corollary 30. If M and N are (w,w; + 1)-iterable premice, then the M con-
structibility order on RN M is an initial segment of the N -constructibility order on
R NN, or vice-versa.

Proof. Let (x; : i < v) = RN M and (y; : i < ) let v < §. Let j be the
least ordinal such that x; # y;. Let z; € JM, \ JM and z; € J, \ JY,
then p,(JM) = pw(Jé\/) = w, now we apply the previous lemma, having w.l.o.g.
TM = JIN for B’ < . Then x; appears as some F;(aq,...,ay), but then this z;
should also appear in jé\/[+17 since ENJM =Fn Jé\,/. [

4. CONDENSATION AND SOLIDITY

Theorem 31. Let M be w-sound and (w,wy,wy + 1)-iterable. Suppose that 7 :
H — M is fully elementary, and crit(7) = plt; then either
(1) H is a proper initial segment of M, or
(2) there is an extender E on the M-sequence such that Ih(E) = plt, and H is
a proper initial segment of Ultg(M, E).

Theorem 32. Let k < w, and let M be a k-sound, (k,w;,w; + 1)-iterable pre-
mouse; then Cyy1(M) exists, and agrees with M below ~y, for all v of M-cardinality

Pr+1(M).

Theorem 33. Let M be an (w,ws,wy + 1)-iterable premouse satisfying the axioms
of ZF, except perhaps Power Set; then the following are true in M:

(1) for all uncountable regular k, Q. ;
(2) for all uncountable regular k (OF <= k 1is not ineffable);
(8) for all infinite cardinals x,0;

5. MICE WITH WOODIN CARDINALS

Definition 34. A premouse M is w-small if whenever k is the critical point of an
extender of M-seuqnece, then

TM B~ »there are w Woodin cardinals«

Definition 35. M7 is the unique (w,w;,w; + 1)-iterable mouse which is not w-
small, but all its initial segments are.

We can see that, it projects to w, hence countable and uniqueness holds.
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