FINE STRUCTURE AND MICE WITH WOODIN CARDINALS IN A NUTSHELL. THE MOUSE M_ω

G. STEPANOV

Contents

1.	Extenders	1
2.	Potential pre-mouse and their fine structure	2
3.	Iteration trees	5
4.	Condensation and solidity	7
5.	Mice with Woodin cardinals	7

1. Extenders

Definition 1. Let $\kappa < \lambda$ and suppose that M is transitive and rudimentarily closed. We call E a (κ, λ) -extender over M iff there is a nontrivial Σ_0 -elementary embedding $j : M \to N$, with N transitive and rudimentarily closed, such that $\kappa = \operatorname{crit}(j), \lambda < j(\kappa)$, and

$$E = \left\{ (a, x) : a \in [\lambda]^{<\omega} \land x \subseteq [\kappa]^{|a|} \land x \in M \land a \in j(x) \right\}.$$

We say in this case that E is derived from j, and write $\kappa = \operatorname{crit}(E), \lambda = \ln(E)$.

We have compatibility, normality and each E_a is a normal κ -complete ultrafilter. Given an extender E then Ult(M, E) is constructed by setting

$$\langle a, f \rangle \sim \langle b, g \rangle \iff \{ u \in [\kappa]^{|a \cup b|} : f_{a, a \cup b}(u) = g_{b, a \cup b}(u) \} \in E_{a \cup b}$$

then the element of the model are corresponding classes of equivalence $[a, f]_E^M$ with

$$[a,f]_E^M \in [b,g]_E^M \iff \{u \in [\kappa]^{|a \cup b|} : f_{a,a \cup b}(u) \in g_{b,a \cup b}(u)\} \in E_{a \cup b}(u)$$

If $M \models \mathsf{AC}$ then Łoś's theorem hold for Σ_0 formulæ, that is, given $\varphi \neq \Sigma_0$ formula

$$\operatorname{Ult}(M, E) \models \varphi([a_1, f_1], \dots, [a_n, f_n])$$

iff.

 $\{u \in [\kappa]^c : M \models \varphi((f_1)_{a_1,c}(u), \dots, (f_n)_{a_n,c}(u))\} \in E_c$

where $c = \bigcup a_i$. Hence, the canonical embedding possesses Σ_1 -elementarity, where the canonical embedding $i_E^M : M \to \text{Ult}(M, E) : x \mapsto [\{0\}, c_x]$ with $c_x : [\kappa]^1 \to M : u \mapsto x$.

Given a (κ, λ) -pre-extender over M and $\xi \leq \lambda$ we set $E|\xi = \{(a, x) \in E : a \subset \xi\}$. Then we can define a natural embedding $\sigma([a, f]_{E|\xi}^M) = [a, f]_E^M$. We call ξ a generator of E if $\xi = \text{CRIT}(\sigma)$, that is $\xi \neq [a, f]_E^M$ for all $f \in M$ and $a \subset \xi$.

Date: October 24, 2023 (compiled).

Definition 2. Given E is a (κ, λ) -pre-extender over M, then

 $\nu(E) = \sup(\kappa^{+M} \cup \{\xi + 1 : \xi \text{ is a generator of } E\})$

we call $\nu(E)$ the support of E.

2. Potential pre-mouse and their fine structure

Now we specify some desired properties of extenders to procreate mice. We work with the J hierarchy TO DEFINE with $J_{\alpha}^{\vec{E}} = J_{\alpha}^{A}$, where $A = \{(\beta, z) : z \in E_{\beta}\}$.

Definition 3. A set A is acceptable at α iff.

$$\forall \beta < \alpha \forall \kappa ((P(\kappa) \cap (J_{\beta+1}^A \setminus J_{\beta}^A) \neq \emptyset) \to J_{\beta+1}^A \models |J_{\beta}^A| \le \kappa)$$

If A is acceptable in α and $J^A_{\alpha} \models \kappa^+$ exists«, then $J^A_{\alpha} \models P(\kappa)$ exists and $P(\kappa) \subset J^A_{\kappa^+}$ «, hence GCH holds there.

Let E be a pre-extender over M, and $M \models \kappa^+$ exists «, where $\kappa = \text{CRIT}(E)$. Let $\nu = \nu(E)$ and $\eta = (\nu^+)^{\text{Ult}(M,E)}$ is in the wfp of Ult(M,E). Now let E^* be the (κ, η) -pre-extender of derived from E. Then $\nu = \nu(E^*)$, so that $E|\nu = E^*|\nu$ and the pre-extenders are equivalent. We call E^* the trivial completion of E. And we index E as η .

We shall use another technical concept. Let E be an extender over M. We say that it is of type Z if $\nu(E) = \lambda + 1$ for some limit λ such that $\lambda = \nu(E|\lambda)$ and $(\lambda^+)^{\text{Ult}(M,E)} = (\lambda^+)^{\text{Ult}(M,E|\lambda)}$. In this case E^* as well as $(E|\lambda)^*$ shall be indexed as at the same place. Hence we do not allow E to be of type Z.

Definition 4. A fine extender sequence is a sequence \vec{E} such that for each $\alpha \in$ dom \vec{E} , \vec{E} is acceptable in α and either $E_{\alpha} = \emptyset$ or E_{α} is (κ, α) -pre-extender over $J_{\alpha}^{\vec{E}}$ for some κ such that $J_{\alpha}^{\vec{E}} \models \kappa^+$ exists«, and:

- (1) E_{α} is the trivial completion of $E_{\alpha}|\nu(E_{\alpha})$, and hence $\alpha = (\nu(E_{\alpha})^{+})^{\text{Ult}(J_{\alpha}^{\vec{E}}, E_{\alpha})}$ and E_{α} is not of a type Z.
- (2) (Coherence) $i(\vec{E}|\kappa)|\alpha = \vec{E}|\kappa$ and $i(\vec{E}|\kappa)_{\alpha} = \emptyset$, where $i: J_{\alpha}^{\vec{E}} \to \text{Ult}(J_{\alpha}^{\vec{E}}, E_{\alpha})$ is the canonical embedding, and
- (3) (Closure under initial segment) for any η such that $(\kappa^+)^{J^{\vec{E}}_{\alpha}} \leq \eta < \nu(E_{\alpha})$, $\eta = \nu(E_{\alpha}|\eta)$, and $E_{\alpha}|\nu$ is not of type Z, one of the things holds:

 - (a) there is a $\gamma < \alpha$ such that E_{γ} is the trivial completion of $E_{\alpha}|\eta$, or (b) $E_{\eta} \neq \emptyset$ and letting $j : J_{\eta}^{\vec{E}} \to \text{Ult}(J_{\eta}^{\vec{E}}, E_{\eta})$ be canonical embedding and $\mu = \text{CRIT}(j)$, there is a $\gamma < \alpha$ such that $j(\vec{E}|\mu)_{\gamma}$ is the trivial completion of $E_{\alpha}|\nu$.

Definition 5. A potential premouse (or ppm) is a structure of the form $(J_{\alpha}^{\vec{E}}, \in$, $\vec{E}|\alpha, E_{\alpha}$), where \vec{E} is a fine extender sequence. We use $\mathcal{J}_{\alpha}^{\vec{E}}$ to denote this structure.

Definition 6. Let $\mathcal{M} = \mathcal{J}_{\alpha}^{\vec{E}}$ be a ppm. We say that \mathcal{M} is *active* if $E_{\alpha} \neq \emptyset$, and passive otherwise. If it is passive, then we say $\nu = \nu(E_{\alpha})$ and $\kappa = \text{CRIT}(E_{\alpha})$, we say it is type I if $\nu = (\kappa^+)^{\hat{\mathcal{M}}}$, is type II if ν is a successor ordinal and is type III if ν is a limit ordinal $> (\kappa^+)^{\mathcal{M}}$.

Definition 7. A structure $(M, \in, A_1, A_2, ...)$ is amenable if

$$\forall X \in M \forall i (A_i \cap x \in M)$$

We want amenability to be satisfied. We can do it by encoding E_{α} as E_{α}^{c} is a set of quadruples (γ, ξ, a, x) such that

$$(\nu(E_{\alpha}) < \gamma < \alpha) \land (\operatorname{CRIT}(E_{\alpha}) < \xi < \operatorname{CRIT}(E_{\alpha})^{+})^{J_{\alpha}^{E}})$$
$$\land (E_{\alpha} \cap ([\nu(E_{\alpha})]^{<\omega} \times J_{\xi}^{\vec{E}})) \land ((a, x) \in (E_{\alpha} \cap ([\gamma]^{<\omega} \times J_{\xi}^{<\omega})))$$

This makes the structure $(J_{\alpha}^{\vec{E}}, \in, \vec{E} | \alpha, E_{\alpha}^{c})$ amenable.

Codes and projecta.

Definition 8. \mathcal{L} is the language of set theory with additional constant symbols $\dot{\mu}, \dot{\nu}, \dot{\gamma}$, and additional unary predicate symbols \dot{E} and \dot{F} .

If \mathcal{M} is active, then we set

$$\mu^{\mathcal{M}} = \operatorname{CRIT}(E_{\alpha})$$

If \mathcal{M} is active of a type II, then there is the longest non-type-Z initial segment F of E_{α} containing properly less information than E_{α} itself, and we let $\gamma^{\mathcal{M}}$ determine where F appears on \vec{E} or an ultrapower of \vec{E} . More precisely we set

$$F = \begin{cases} (E_{\alpha} | (\nu^{\mathcal{M}} - 1))^* & , \text{ if } ()^* \text{ is not type Z} \\ (E_{\alpha} | \nu(E_{\alpha} | (\nu^{\mathcal{M}} - 1)) - 1)^* & , \text{ otherwise} \end{cases}$$

 γ = the unique ξ with $E_{\xi} = F$

if no such then $\eta = \nu(F)$, which we have by the definition of 3b

Definition 9. Let $\mathcal{M} = \mathcal{J}_{\alpha}^{\vec{E}}$ be a ppm; then the Σ_0 code \mathcal{M} or $\mathcal{C}_0(\mathcal{M})$ is the \mathcal{L} -structure given by:

- (1) if \mathcal{M} is passive then \mathcal{N} has universe $J_{\alpha}^{\vec{E}}$, $\dot{E}^{\mathcal{N}} = \vec{E} | \alpha, \dot{F}^{\mathcal{N}} = \emptyset$, and $\dot{\mu}^{\mathcal{N}} = \dot{\nu}^{\mathcal{N}} = \dot{\gamma}^{\mathcal{N}} = 0$;
- (2) if \mathcal{M} is active of types I or II, then \mathcal{N} has universe $J_{\alpha}^{\vec{E}}, \dot{E}^{\mathcal{N}} = \vec{E} \lceil \alpha, \dot{F}^{\mathcal{N}} = E_{\alpha}^{*}$ (where E_{α}^{*} is the amenable coding of E_{α}), and $\dot{\mu}^{\mathcal{N}} = \mu^{\mathcal{M}}, \dot{\nu}^{\mathcal{N}} = \nu^{\mathcal{M}},$ and $\dot{\gamma}^{\mathcal{N}} = \gamma^{\mathcal{M}};$
- (3) if \mathcal{M} is active type III, then letting $\nu = \nu (E_{\alpha})$, \mathcal{N} has universe $J_{\nu}^{\vec{E}}$, $\dot{E}^{\mathcal{N}} = \vec{E} | \nu, \dot{F}^{\mathcal{N}} = E_{\alpha} | \nu, \dot{\mu}^{\mathcal{N}} = \mu^{\mathcal{M}}$, and $\dot{\nu}^{\mathcal{N}} = \dot{\gamma}^{\mathcal{N}} = 0$;

Definition 10. Let \mathcal{M} be a ppm; then we call the least ordinal α such that there is some $\Sigma_1^{\mathcal{C}_0(\mathcal{M})}$ subset $A \subset \alpha$ with $A \notin \mathcal{C}_0(\mathcal{M})$, the Σ_1 projectum of \mathcal{M} or $\rho_1(\mathcal{M})$. (In particular $\rho_1(\mathcal{M}) \leq \operatorname{Ord} \cap \mathcal{C}_0(\mathcal{M})$.)

Notice that the new set A may not be (lightface) Σ_1 -definable. Since there is a $\Sigma_1^{\mathcal{C}_0(\mathcal{M})}$ map from the class of finite sets of ordinals onto $\mathcal{C}_0(\mathcal{M})$, we can take the parameter from which A is defined to be a finite set of ordinals. We standardize the parameter by minimizing it in a certain wellorder.

Definition 11. A parameter is a finite sequence $\langle \alpha_0, \ldots, \alpha_n \rangle$ of ordinals such that $\alpha_0 > \cdots > \alpha_n$ (and could be empty). If \mathcal{M} is a ppm, then the first standard parameter of \mathcal{M} , or $p_1(\mathcal{M})$, is the lexicographically least parameter p such that there is a $\Sigma_1^{\mathcal{C}_0(\mathcal{M})}(\{p\})$ set A such that $(A \cap \rho_1(\mathcal{M})) \notin \mathcal{C}_0(\mathcal{M})$

G. STEPANOV

- (1) For any \mathcal{L} structure \mathcal{Q} and set $X \subset |\mathcal{Q}|, \mathcal{H}_1^{\mathcal{Q}}(X)$ is the Definition 12. transitive collapse of the substructure of \mathcal{Q} whose consists of all $y \in |\mathcal{Q}|$,
 - such that $\{y\}$ is $\Sigma_1^{\mathcal{Q}}$ definable from parameters in X. (2) for any ppm \mathcal{M} , the *first core* of \mathcal{M} , $\mathcal{C}_1(\mathcal{M})$, is defined by: $\mathcal{C}_1(\mathcal{M}) = \mathcal{H}_1^{\mathcal{C}_0(\mathcal{M})}(\rho_1(\mathcal{M}) \cup \{p_1(\mathcal{M})\}).$

For $\mathcal{C}_1(\mathcal{M})$ exists \mathcal{N} , such that $\mathcal{C}_0(\mathcal{N}) = \mathcal{C}_1(\mathcal{M})$. It follows from $\mathcal{C}_1(\mathcal{M}) \prec_{\Sigma_1}$ $\mathcal{C}_0(\mathcal{M})$ and saying »I am a code« is Π_2 , hence downwards absolute.

Definition 13. Let \mathcal{M} be a ppm.

- (1) We say that $p_1(\mathcal{M})$ is universal if whenever $A \subset \rho_1(\mathcal{M})$ and $A \in C_0(\mathcal{M})$, then $A \in C_1(\mathcal{M})$;
- (2) Let $p_1(\mathcal{M}) = \langle \alpha_0, \dots, \alpha_n \rangle$. We say that $p_1(\mathcal{M})$ is 1-solid if whenever $i \leq n$ and A is $\Sigma_1^{\mathcal{C}_0(\mathcal{M})}(\{\alpha_0, \dots, \alpha_{i-1}\})$, then $A \cap \alpha_i \in \mathcal{C}_0(\mathcal{M})$; (3) We say that \mathcal{M} 1-solid just in case $p_1(\mathcal{M})$ is 1-solid and 1-universal;

Lemma 14. If \mathcal{N} is such that $\mathcal{C}_1(\mathcal{M}) = \mathcal{C}_0(\mathcal{N})$ and $p_1(\mathcal{M})$ is universal, then $\rho_1(\mathcal{M}) = \rho_1(\mathcal{N})$ and the image of $p_1(\mathcal{M})$ under transitive collapse is $p_1(\mathcal{N})$.

Proof. Let r be the image of $p_1(\mathcal{M})$ under transitive collapse. First, if $\alpha < \rho_1(\mathcal{M})$ then $\alpha < \rho_1(\mathcal{N})$ and hence $\rho_1(\mathcal{M}) \leq \rho_1(\mathcal{N})$. Now consider $s <_{\text{lex}} r$, if A is definable over $\mathcal{C}_0(\mathcal{N})$, by minimality of $p_1(\mathcal{M})$ is in $\mathcal{C}_0(\mathcal{M})$, hence in $\mathcal{C}_0(\mathcal{N})$.

Moreover, as the collapse is identity on $\rho_1(\mathcal{M})$, r defines a new Σ_1 subset of $\rho_1(\mathcal{M})$ over $\mathcal{C}_0(\mathcal{N})$, hence $\rho_1(\mathcal{N}) \leq \rho_1(\mathcal{M})$ and $p_1(\mathcal{N}) \leq_{\text{lex}} r$.

The 1-solidity of $p_1(\mathcal{M})$ is important in showing that $i(p_1(\mathcal{M})) = p_1(\mathcal{Q})$ for certain ultrapower embeddings $i: \mathcal{M} \to \mathcal{Q}$.

Lemma 15. Let $\mathcal{C}_0(\mathcal{M})$ be a ppm with $\rho_1(\mathcal{M}) < \text{Ord}^{\mathcal{M}}$. If r is 1-solid, then $r \leq_{\text{lex}} p = p_1(\mathcal{M}).$

Proof. Let $p = \langle \alpha_0, \ldots, \alpha_n \rangle$ and $r = \langle \beta_0, \ldots, \beta_n \rangle$. Suppose p < r. Let d be the first disagreement of p and r, i.e. $\alpha_i = \beta_i$ for i < d and $\alpha_d < \beta_d$. Or d = n + 1, then r is an end extension. Using this fact any A which is $\Sigma_1^{\mathcal{C}_0(\mathcal{M})}(\{\beta_0,\ldots,\beta_{d-1}\})$ does not define any new set A with $\beta_d \cap A \notin \mathcal{C}_0(\mathcal{M})$.

Inductively we can define n-projecta, soundness, solidity. So,

Definition 16. Let \mathcal{M} be a ppm; then \mathcal{M} is ω -solid iff. \mathcal{M} is *n*-solid for all $n < \omega$, and \mathcal{M} is ω -sound iff. \mathcal{M} is *n*-sound for all $n < \omega$. If \mathcal{M} is ω -solid, then we let $\rho_{\omega}(\mathcal{M})$ be the eventual value of $\rho_n(\mathcal{M})$ and $\mathcal{C}_{\omega}(\mathcal{M})$ the eventual value of $\mathcal{C}_n(\mathcal{M})$ as $n \to \omega$.

Definition 17. Let $\mathcal{M} = \mathcal{J}_{\alpha}^{\vec{E}}$ be a ppm, let $\beta \leq \alpha$; we write $\mathcal{J}_{\beta}^{\mathcal{M}}$ for $\mathcal{J}_{\beta}^{\vec{E}}$. Then \mathcal{N} is an initial segment iff. $\exists \beta \leq \alpha (\mathcal{N} = \mathcal{J}_{\beta}^{\mathcal{M}})$.

We call ppm a *coded premouse* if all its initial segments are ω -sound.

Definition 18. Let *E* be a (κ, λ) -extender over $\mathcal{C}_0(\mathcal{M})$; then we say that *E* is *close* to $\mathcal{C}_0(\mathcal{M})$ iff. for every $a \in [\lambda]^{<\omega}$

- (1) E_a is Σ_1 -definable over $\mathcal{C}_0(\mathcal{M})$ form parameter, and
- (2) if $\in \mathcal{C}_0(\mathcal{M})$ and $\mathcal{C}_0(\mathcal{M}) \models |\mathcal{A}| \leq \kappa$, then $E_a \cap \mathcal{A} \in \mathcal{C}_0(\mathcal{M})$;

4

FINE STRUCTURE AND MICE WITH WOODIN CARDINALS IN A NUTSHELL. THE MOUSE $M_{\mathfrak{H}}$

Fine structure and Ultrapowers. So far the construction of ultrapower could only guarantee us Σ_1 -elementarity. If \mathcal{M} is active, *n*-sound and $\operatorname{CRIT}(E) < \rho_n(\mathcal{M})$, then we can generate a stronger ultrapower of \mathcal{M} , one for which Łoś's theorem holds for $r\Sigma_n$ formulæ. Roughly speaking, one allowed to use $r\Sigma_n$ -definable functions with parameters from $\mathcal{C}_0(\mathcal{M})$. Since $\operatorname{CRIT}(E) < \rho_n(\mathcal{M})$, we can say that E measures enough sets for such an embedding.

Definition 19. Let $\pi : \mathcal{C}_0(\mathcal{M}) \to \mathcal{C}_0(\mathcal{N})$ and let $n \leq \omega$. We call π an *n*-embedding if

- (1) \mathcal{M} and \mathcal{N} are *n*-sound;
- (2) π is $r\Sigma_n$ -elementary;
- (3) $\pi(p_i(\mathcal{M})) = p_i(\mathcal{N})$ for all $i \leq n$;
- (4) $\pi(\rho_i(\mathcal{M})) = \rho_i(\mathcal{N})$ for all i < n and $\sup(\pi[\rho_n(\mathcal{M})]) = \rho_n(\mathcal{N});$

We call π an $\omega\text{-embedding if it is fully elementary, it preserves projecta and parameters.$

Lemma 20. For all $n \leq \omega$ canonical embedding associated with n-th ultrapower is an n-embedding.

Corollary 21. Let \mathcal{M} be a premouse. And let E be a (κ, λ) -extender over $\mathcal{C}_0(\mathcal{M})$, which is close to $\mathcal{C}_0(\mathcal{M})$ with $\kappa < \rho_n(\mathcal{M})$. Let \mathcal{N} be such that $\mathcal{C}_0(\mathcal{N}) = \text{Ult}_n(\mathcal{C}_0(\mathcal{M}), E)$, \mathcal{M} is n-sound and (n + 1)-solid, and $\rho_{n+1}(\mathcal{M}) \leq \kappa$, then \mathcal{N} is n-sound but not (n + 1)-sound.

3. Iteration trees

Now given a k-sound premouse and θ is an ordinal, we define the *iteration game* $\mathcal{G}_k(\mathcal{M}, \theta)$.

Definition 22. A *tree order on* α is a strict partial order T of α with least element 0 such that for all $\gamma < \alpha$:

- (1) $\beta T \gamma \implies \beta < \gamma$
- (2) $\{\beta : \beta T \gamma\}$ is wellordered by T.
- (3) γ is a successor ordinal $\iff \gamma$ is a *T*-successor, and
- (4) γ is a limit ordinal $\implies \{\beta : \beta T \gamma\}$ is cofinal in γ .

If T is a tree order then

$$[\beta, \gamma]_T = \{\eta : \eta = \beta \lor \beta T \eta T \gamma \lor \eta = \gamma\}$$

we say that premice \mathcal{M} and \mathcal{N} agree below γ iff. $\mathcal{J}_{\beta}^{\mathcal{M}} = \mathcal{J}_{\beta}^{\mathcal{M}}$ for all $\beta < \gamma$.

The Game. Players are given a tree T of order θ , a premice M_{α} for $\alpha < \theta$ with $\mathcal{M}_0 = \mathcal{M}$, an extender F_{α} form the \mathcal{M}_{α} sequence, and a set $D \subset \theta$ and embedding $i_{\alpha,\beta} : \mathcal{C}_0(\mathcal{M}_{\alpha}) \to \mathcal{C}_0(\mathcal{M}_{\beta})$ defined whenever $\alpha T\beta$ and $D \cap (\alpha; \beta|_T = \emptyset$.

The rules guarantee that $\alpha \leq \beta \implies \mathcal{M}_{\alpha}$ agrees with \mathcal{M}_{β} below $\ln(F_{\alpha})$ and $\alpha < \beta \implies \ln(F_{\alpha})$ is a cardinal of \mathcal{M}_{β} (see the proof later).

At move $\alpha + 1$ the player I picks an extender F_{α} from the \mathcal{M}_{α} with $\ln(F_{\xi}) < \ln(F_{\alpha})$ for all $\xi < \alpha$ (if they cannot, the game is over and they loses). Now let $\beta \leq \alpha$ be the least such that $\operatorname{CRIT}(F_{\alpha}) < \nu(F_{\beta})$. Let now

$$\mathcal{M}_{\alpha+1}^* = \mathcal{J}_{\gamma}^{\mathcal{M}_{\beta}}, \text{ where } \gamma \text{ is the largest } \eta, \text{ such that} \\ F_{\alpha} \text{ is a pre-extender over } \mathcal{J}_{\eta}^{\mathcal{M}_{\beta}}.$$

Our agreement hypothesis imply that γ exists, $\ln(F_{\beta}) \leq \gamma$, and F_{α} is a preextender over $\mathcal{C}_0(\mathcal{J}_{\gamma}^{\mathcal{M}_{\beta}})$.

Proof. It is clear if $\beta = \alpha$. Let now $\beta < \alpha$ and $\kappa = \operatorname{CRIT}(F_{\alpha})$. Having $\ln(F_{\beta}) < \beta$ $lh(F_{\alpha})$ and $lh(F_{\beta})$ being a cardinal if \mathcal{M}_{α} .

$$P(\kappa) \cap \mathcal{J}_{\mathrm{lh}(F_{\beta})}^{\mathcal{M}_{\beta}} = P(\kappa) \cap \mathcal{M}_{\alpha} = P(\kappa) \cap \mathcal{J}_{\mathrm{lh}(F_{\alpha})}^{\mathcal{M}_{\alpha}}$$

Then we put $\alpha + 1 \in D$ iff. $\mathcal{M}_{\alpha+1}^*$ is a proper initial segment of \mathcal{M}_{β} .

Len now $n \leq \omega$ be the largest that: 1) CRIT $F_{\alpha} < \rho_n(M_{\alpha+1}^*)$ and 2) if $D \cap [0; \alpha + 1]$ $1]_T = \emptyset$, then $n \leq k$, we set

$$\mathcal{M}_{\alpha+1} = \mathrm{Ult}(\mathcal{M}_{\alpha+1}^*, F_\alpha)$$

if it is well-defined, otherwise II has lost. Finally we let $\beta T(\alpha+1)$, and if $\alpha+1 \notin D$, then $i_{\beta,\alpha+1}: \mathcal{C}_0(\mathcal{M}_\beta) \to \mathcal{C}_0(\mathcal{M}_{\alpha+1})$ is the canonical ultrapower embedding.

It can be shown that the hypothesis is retained.

Player II acts on limits by picking a cofinal (in λ) well-founded branch, that it $D \cap b$ is bounded in λ and the limit (in end-segment) is well-founded. Then we set \mathcal{M}_{γ} and embedding $i_{\alpha,\lambda}$ for all $\alpha \in b \setminus \sup b$.

If they reach θ , player II wins.

Definition 23. A k-maximal iteration tree on \mathcal{M} is a partial play of the game $\mathcal{G}_k(\mathcal{M},\theta)$ in which neither player has yet lost.

Lemma 24. Let \mathcal{T} be an iteration tree, and let $\alpha + 1 < \text{lh}(\mathcal{T})$; then E_{α} is close to $\mathcal{M}^*_{\alpha+1}$.

Definition 25. If \mathcal{T} is an iteration tree with models \mathcal{M}_{α} and extenders E_{α} , and $\alpha + 1 < \ln(\mathcal{T})$, then $\deg^{\mathcal{T}}(\alpha + 1)$ is the largest $n \leq \omega$ such that $\mathcal{M}_{\alpha+1} = \text{Ult}_n(\mathcal{M}_{\alpha+1}^*, E_{\alpha})$. Also, we use $i_{\alpha+1}^{*\mathcal{T}}$ for the canonical embedding from $\mathcal{M}_{\alpha+1}^*$ into this ultrapower.

Definition 26. A (k, θ) -iteration strategy for \mathcal{M} is a winning strategy for II in $\mathcal{G}_k(\mathcal{M},\theta)$. We say \mathcal{M} is (k,θ) -iterable iff. there is such a strategy.

Comparison.

Definition 27. 3.10 Definition. A branch b of the iteration tree \mathcal{T} drops (in model or degree) iff $D^{\mathcal{T}} \cap b \neq \emptyset$ or $\deg^{\mathcal{T}}(b) < \deg^{\mathcal{T}}(0)$.

Theorem 28 (The Comparison Lemma). Let \mathcal{M} and \mathcal{N} be k-sound premice of size $\leq \theta$, and suppose that Σ and Γ are $(k, \theta^+ + 1)$ -iteration strategies for \mathcal{M} and \mathcal{N} respectively; then there are iteration trees \mathcal{T} and \mathcal{U} played according to Σ and Γ ; and having last models $\mathcal{M}^{\mathcal{T}}_{\alpha}$ and $\mathcal{N}^{\mathcal{U}}_{\eta}$ such that either

- [0, α]_T does not drop in model or degree, and M^T_α is an initial segment of N^U_η;
 (2) or vice versa;

Corollary 29. Let \mathcal{M} and \mathcal{N} be ω -sound $(\omega, \omega_1 + 1)$ -iterable premice such that $\rho_{\omega}(\mathcal{M}) = \rho_{\omega}(\mathcal{N}) = \omega$; then \mathcal{M} is an initial segment of \mathcal{N} , or vice-versa.

 $\mathbf{6}$

FINE STRUCTURE AND MICE WITH WOODIN CARDINALS IN A NUTSHELL. THE MOUSE $M \ensuremath{\mathcal{I}}$

Proof. By comparison Lemma we have trees \mathcal{T}, \mathcal{U} and w.l.o.g. $\mathcal{M}_{\alpha}^{\mathcal{T}} \triangleleft \mathcal{N}_{\beta}^{\mathcal{U}}$. Then for no extender $\operatorname{CRIT}(E) < \rho_{\omega}(\mathcal{M})$, hence $[0, \alpha]$ does not drop iff. $\alpha = 0$. If $\beta > 0$ then $\mathcal{N}_{\beta}^{\mathcal{U}}$ is not ω -sound. Thus, \mathcal{M} is a proper initial segment, which is countable in $\mathcal{N}_{\beta}^{\mathcal{U}}$, hence \mathcal{M} is a proper initial segment of \mathcal{N} , since iteration does not produce new reals. \Box

Corollary 30. If \mathcal{M} and \mathcal{N} are $(\omega, \omega_1 + 1)$ -iterable premice, then the \mathcal{M} constructibility order on $\mathbb{R} \cap \mathcal{M}$ is an initial segment of the \mathcal{N} -constructibility order on $\mathbb{R} \cap \mathcal{N}$, or vice-versa.

Proof. Let $\langle x_i : i < \gamma \rangle = \mathbb{R} \cap \mathcal{M}$ and $\langle y_i : i < \beta \rangle$ let $\gamma \leq \delta$. Let j be the least ordinal such that $x_j \neq y_j$. Let $x_j \in \mathcal{J}_{\alpha+1}^{\mathcal{M}} \setminus \mathcal{J}_{\alpha}^{\mathcal{M}}$ and $x_j \in \mathcal{J}_{\beta+1}^{\mathcal{M}} \setminus \mathcal{J}_{\beta}^{\mathcal{N}}$, then $\rho_{\omega}(\mathcal{J}_{\alpha}^{\mathcal{M}}) = \rho_{\omega}(\mathcal{J}_{\beta}^{\mathcal{N}}) = \omega$, now we apply the previous lemma, having w.l.o.g. $\mathcal{J}_{\alpha}^{\mathcal{M}} = \mathcal{J}_{\beta'}^{\mathcal{N}}$ for $\beta' \leq \beta$. Then x_j appears as some $F_i(a_1, \ldots, a_n)$, but then this x_j should also appear in $\mathcal{J}_{\beta'+1}^{\mathcal{N}}$, since $E \cap \mathcal{J}_{\alpha}^{\mathcal{M}} = F \cap \mathcal{J}_{\beta'}^{\mathcal{N}}$.

4. Condensation and solidity

Theorem 31. Let \mathcal{M} be ω -sound and $(\omega, \omega_1, \omega_1 + 1)$ -iterable. Suppose that π : $\mathcal{H} \to \mathcal{M}$ is fully elementary, and $\operatorname{crit}(\pi) = \rho_{\omega}^{\mathcal{H}}$; then either

- (1) \mathcal{H} is a proper initial segment of \mathcal{M} , or
- (2) there is an extender E on the \mathcal{M} -sequence such that $\ln(E) = \rho_{\omega}^{\mathcal{H}}$, and \mathcal{H} is a proper initial segment of $\text{Ult}_0(\mathcal{M}, E)$.

Theorem 32. Let $k < \omega$, and let \mathcal{M} be a k-sound, $(k, \omega_1, \omega_1 + 1)$ -iterable premouse; then $\mathcal{C}_{k+1}(\mathcal{M})$ exists, and agrees with \mathcal{M} below γ , for all γ of \mathcal{M} -cardinality $\rho_{k+1}(\mathcal{M})$.

Theorem 33. Let \mathcal{M} be an $(\omega, \omega_1, \omega_1 + 1)$ -iterable premouse satisfying the axioms of ZF, except perhaps Power Set; then the following are true in \mathcal{M} :

- (1) for all uncountable regular $\kappa, \Diamond_{\kappa}$;
- (2) for all uncountable regular $\kappa (\Diamond_{\kappa}^{+} \iff \kappa \text{ is not ineffable});$
- (3) for all infinite cardinals κ, \Box_{κ} ;

5. Mice with Woodin Cardinals

Definition 34. A premouse \mathcal{M} is ω -small if whenever κ is the critical point of an extender of \mathcal{M} -sequence, then

 $\mathcal{J}^{\mathcal{M}}_{\kappa} \not\models$ »there are ω Woodin cardinals«

Definition 35. $M_{\omega}^{\#}$ is the unique $(\omega, \omega_1, \omega_1 + 1)$ -iterable mouse which is not ω -small, but all its initial segments are.

We can see that, it projects to ω , hence countable and uniqueness holds.