On topological properties of quantum channels Supervisor: Maksim E. Shirokov

Grigorii S. Stepanov

October 2, 2022

G. S. Stepanov

On topological properties of quantum channe

October 2, 2022

I ∃ ►

Preliminaries

Quantum channels

B Results

- Closedness of finite Choi rank channels
- Characterisation of homomorphic channels
- Continuous selection of Stinespring representation

4 Summary

Introduction

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

3

Introduction

Motivations:

- Stinespring and Kraus representation are crucial in studying quantum channels
- proper topology should be natural in physical sense
- Stinespring and Kraus representations are multy-valued
- continuous selection is a natural and desired property

Preliminaries

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

3

C*-algebras

Definition

*C**-*algebra* is a Banach algebra with an involution operation \cdot *, which possesses the following properties:

•
$$(x + y)^* = x^* + y^*$$
, $(xy)^* = x^*y^*$

•
$$(\lambda x)^* = \overline{\lambda} x^*$$

•
$$||x^*x|| = ||x|| ||x^*||$$

Self-adjoint $(x = x^*)$ elements of a C^* -algebra are called *positive* and the set of all positive elements we denote by V^+ . We say that $a \ge b$ iff. $a - b \in V^+$.

Completely-positive maps

Definition

A linear map A between C^* -algebras is called *positive* if it maps positive elements to positive, A is a C^* -homomorphism if it is positive and preserves squares of self-adjoint elements.

Definition

A linear map A between C^* -algebras is called completely positive, the map $id_n \otimes A$ is positive for any $n \in \mathbb{N}$, where $id_n : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ is an identity.

・ロト ・ 同ト ・ ヨト ・ ヨト

Quantum channels

Definition

Given Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$ and algebras of operators $\mathfrak{B}(\mathcal{H}_A), \mathfrak{B}(\mathcal{H}_B)$, quantum channel in the Schrödinger picture is a map $\Phi: \mathfrak{T}(\mathcal{H}_A) \to \mathfrak{T}(\mathcal{H}_B)$ that is trace preserving and completely positive (cptp). Dually, quantum channel in the Heisenberg picture is a completely positive unital map (cpu) $\Phi^*: \mathfrak{B}(\mathcal{H}_B) \to \mathfrak{B}(\mathcal{H}_A)$.

There is a dual cpu Φ^* for any cptp Φ and vice versa, defined by $\operatorname{Tr}\rho\Phi^*(C) = \operatorname{Tr}\Phi(\rho)A$ for any $\rho \in \mathfrak{S}(\mathcal{H}_A)$, $C \in \mathfrak{B}(\mathcal{H}_B)$.

Representations

The next two theorems provides useful characterisation of quantum channels:

Theorem

(Stinespring) For any cptp map Φ there exists a Hilbert space \mathcal{H}_E and isometry $V : \mathcal{H}_A \to \mathcal{H}_{BE}$, such that $\Phi(\rho) = Tr_E V \rho V^*$ and $\Phi^*(C) = V^*(C \otimes I_E)V$ for any $\rho \in \mathfrak{S}(\mathcal{H}_A)$, $C \in \mathfrak{B}(\mathcal{H}_B)$.

Representations

The next two theorems provides useful characterisation of quantum channels:

Theorem

(Stinespring) For any cptp map Φ there exists a Hilbert space \mathcal{H}_E and isometry $V : \mathcal{H}_A \to \mathcal{H}_{BE}$, such that $\Phi(\rho) = Tr_E V \rho V^*$ and $\Phi^*(C) = V^*(C \otimes I_E)V$ for any $\rho \in \mathfrak{S}(\mathcal{H}_A)$, $C \in \mathfrak{B}(\mathcal{H}_B)$.

Theorem

(Kraus) For any cptp map Φ there exists a set of operators $V_i : \mathcal{H}_A \to \mathcal{H}_B$, such that $\Phi(\rho) = \sum_i V_i \rho V_i^*$ and $\Phi^*(C) = \sum_i V_i^* CV_i$ for any $\rho \in \mathfrak{S}(\mathcal{H}_A)$, $C \in \mathfrak{B}(\mathcal{H}_B)$, moreover $\sum_i V_i^* V_i = I$.

Topologies on quantum channels

There are several natural topologies on the set of quantum channels:

Definition

Diamond norm is the following functional $\|\Phi\|_{\diamond} = \sup_{\rho \in \mathfrak{S}(\mathcal{H}_{AR})} \|\Phi \otimes \mathsf{Id}_{R}(\rho)\|_{1}$

Topologies on quantum channels

There are several natural topologies on the set of quantum channels:

Definition

Diamond norm is the following functional $\|\Phi\|_{\diamond} = \sup_{\rho \in \mathfrak{S}(\mathcal{H}_{AR})} \|\Phi \otimes \mathsf{Id}_{R}(\rho)\|_{1}$

Consider the single-mode Bosonic quantum limited attenuator, uniquely defined by $\mathcal{A}_{\eta}(|\alpha\rangle\langle\alpha|) = |\eta\alpha\rangle\langle\eta\alpha|$. Consider one-parametric family of attenuators $\{\mathcal{A}_{e^{-t}}\}_{t\in\mathbb{R}}$, by [1] $\|\mathcal{A}_{\eta} - \mathcal{A}_{\eta'}\|_{\diamond} = 2$, whenever $\eta \neq \eta'$ and $|\eta| \leq 1$.

Topologies on quantum channels

There are several natural topologies on the set of quantum channels:

Definition

Diamond norm is the following functional $\|\Phi\|_{\diamond} = \sup_{\rho \in \mathfrak{S}(\mathcal{H}_{AR})} \|\Phi \otimes \mathsf{Id}_{R}(\rho)\|_{1}$

Consider the single-mode Bosonic quantum limited attenuator, uniquely defined by $\mathcal{A}_{\eta}(|\alpha\rangle\langle\alpha|) = |\eta\alpha\rangle\langle\eta\alpha|$. Consider one-parametric family of attenuators $\{\mathcal{A}_{e^{-t}}\}_{t\in\mathbb{R}}$, by [1] $\|\mathcal{A}_{\eta} - \mathcal{A}_{\eta'}\|_{\diamond} = 2$, whenever $\eta \neq \eta'$ and $|\eta| \leq 1$.

Definition

Strong topology is a topology, defined by the family of seminorms $\Phi \mapsto \|\Phi(\rho)\|_1$.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Preliminaries

Definition

Choi rank of a quantum channel is the minimal cardinality of the set of operators in Kraus decomposition. (Or minimal dimension of \mathcal{H}_E in Stinespring representation).

Theorem

(Choi–Jamiołkowski isomorphism) Let $\mathcal{H}, \mathcal{H}'$ and \mathcal{K} be separable Hilbert spaces and $|\Omega\rangle$ be an unit vector in $\mathcal{H} \otimes \mathcal{K}$ such that $\sigma = \text{Tr}_{\mathcal{H}} |\Omega\rangle \langle \Omega|$ is a full rank state in \mathcal{K} . Then

$$\mathfrak{H}:\mathfrak{F}_{\leq 1}(\mathcal{H},\mathcal{H}')\to\mathfrak{T}(\mathcal{H}')\otimes\mathfrak{T}(\sigma)\ :\ \Phi\mapsto\Phi\otimes\mathit{Id}(|\Omega\rangle\langle\Omega|)$$

is a topological isomorphism. (With respect to strong topology on the set on cp maps). [2]

(日)

э

Preliminaries

For given full rank state $\sigma = \sum_{i} \lambda_{i} |i\rangle \langle i|$ in $\mathfrak{S}(\mathcal{K})$ let $\mathfrak{T}(\sigma)$ be the subset of $\mathfrak{T}_{1}(\mathcal{K})$ consisting of all operators A such that $\sum_{i,j} \frac{\langle i|A|j\rangle}{\sqrt{\lambda_{i}\lambda_{j}}} |i\rangle \langle j| \leq I_{\mathcal{K}}$. By $\mathfrak{T}(\mathcal{H}) \otimes \mathfrak{T}(\sigma)$ we assume $\{A \in \mathfrak{T}_{1}(\mathcal{H} \otimes \mathcal{K}) \mid \operatorname{Tr}_{\mathcal{H}} A \in \mathfrak{T}(\sigma)\}$.

Proposition

Given $n \in \mathbb{N}$, then the set of channels with Choi rank not exceeding n is closed in strong topology.

(Proof sketch) By Choi–Jamiołkowski isomorphism we only need to show closedness of \mathfrak{H} -image of this set.

$$\Phi_k \rightarrow_s \Phi \iff \Phi_k \otimes \mathit{Id}(|\Omega\rangle\langle\Omega|) \rightarrow_{\|\cdot\|_1} \Phi \otimes \mathit{Id}(|\Omega\rangle\langle\Omega|)$$

$$\iff \lim_{k} \sum_{i \leq n} V_{k}^{(i)} \otimes I |\Omega\rangle \langle \Omega | V_{k}^{(i)*} \otimes I = A$$

By the argument from proof in [2], if A has rank n, then its \mathfrak{H} -preimage has Choi rank at most n.

14 / 22

The following lemma completes the proof:

Lemma

Let $\langle \sigma_k : k \in \mathbb{N} \rangle \subset \mathfrak{S}(\mathcal{H})$ be such that $\sigma_k \to_{\|\cdot\|_1} \sigma$ and σ_k has rank at most N, than σ also has rank at most N.

Definition

Channel Φ is *unitarily equivalent to a partial trace*, if there exists \mathcal{H}_E and unitary $V : \mathcal{H}_A \to \mathcal{H}_{BE}$, such that $\Phi^*(C) = V^*(C \otimes I_E)V$.

Results

- ∢ ∃ ▶

< □ > < □ > < □ > < □ >

Definition

Channel Φ is *unitarily equivalent to a partial trace*, if there exists \mathcal{H}_E and unitary $V : \mathcal{H}_A \to \mathcal{H}_{BE}$, such that $\Phi^*(C) = V^*(C \otimes I_E)V$.

Results

Proposition

Quantum channel is unitarily equivalent to a partial iff. $\Phi^*(C^*C) = \Phi^*(C^*)\Phi^*(C)$ for any $C \in \mathfrak{B}(\mathcal{H})$.

(日)

Preliminaries

KSW theorem provides continuity of Stinespring representation in the following form:

Results

$$\frac{1}{2} \| \Phi - \Psi \|_{\diamond} \le \inf \| V_{\Phi} - V_{\Psi} \| \le \sqrt{\| \Phi - \Psi \|_{\diamond}}$$

In [3] selective continuity for sequences was shown. But general selective continuity is unclear for Stinespring/unitary representations. Here we provide finite-dimensional version of this property.

Proposition

Let $F \subset \mathfrak{F}(\mathcal{H}_A; \mathcal{H}_B)$ be a finite-dimensional simplex, defined by a convex hull of the set of points { $\Phi_i : i < n$ }. Let $G \subseteq F$ be a (diamond norm) connected subset of F. Then there exists a continuous selection for Stinespring dilation for this set.

Results

Proposition

Let $F \subset \mathfrak{F}(\mathcal{H}_A; \mathcal{H}_B)$ be a finite-dimensional simplex, defined by a convex hull of the set of points { $\Phi_i : i < n$ }. Let $G \subseteq F$ be a (diamond norm) connected subset of F. Then there exists a continuous selection for Stinespring dilation for this set.

Results

Consider rest : $V \mapsto V^*((\cdot) \otimes I_E)V$. The proof idea is based on the fact that any point $\varphi \in G$ can be uniquely represented as a convex combination $\sum_{i < n} \lambda_i \Phi_i$. Then we consider arbitrary representation $\{V_i : i < n\}$, such that rest $(V_i) = \Phi_i$. In this case we can take $\bigoplus_{i < n} \sqrt{\lambda_i}V_i$ as a preimage of such φ .

Further steps

Conjecture

Continuous selection exists for any compact set of quantum channels.

Steps might be taken

- generalize lemma for countable simplices
- deal with uniqueness of representation
- apply analog of Gelfand-Mazur theorem

Summary

G. S. Stepanov

On topological properties of quantum channe

October 2, 2022

イロト イロト イヨト イヨト

Summary

- closedness of the set of channels with bounded Choi-rank was shown
- criterion for channels unitarily equivalent to a partial trace was shown
- restricted property of continuous selection for Stinespring dilation was shown

< □ > < □ > < □ > < □ > < □ > < □ >

Andreas Winter.

Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities, 2017.

M. E. Shirokov and A. S. Holevo.

On approximation of quantum channels. 2007.

M. E. Shirokov.

Strong convergence of quantum channels: Continuity of the Stinespring dilation and discontinuity of the unitary dilation. *Journal of Mathematical Physics*, 61(8):082204, 2020.