Non-determenistic semantics for modal logic Supervisor: Yoni Zohar (Bar Ilan University)

Grigorii S. Stepanov

October 5, 2022

- Introduction
- Preliminaries
 - Semantic
 - Sequent calculi
- Results for S4
 - Soundeness
 - Completeness
- Effectiveness
 - Extension
- 5 Kripke models correspondence
- 6 Summary

Introduction

Introduction

Motivations:

- philosophical: do possible worlds really exist?¹
- finite models: reasoning about decidability/complexity
- possible application of SAT-solvers

¹John T. Kearns. "Modal Semantics without Possible Worlds". In: *J. Symb. Log.* 46.1 (1981), pp. 77–86.

Preliminaries

Modal language

Definition

Consider a countable set of propositional variables $Prop = \{p_i \mid i < \omega\}$. Then \mathcal{L} is defined as follows:

$$\mathcal{L} = p_i \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \neg \varphi \mid \Box \varphi$$

where $p_i \in Prop, \varphi, \psi \in \mathcal{L}$.

Nmatrices

A Nmatrix M for \mathcal{L} is a triple of the form $\langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where

- ullet $\mathcal V$ is a set of truth values
- $\mathcal{D} \subseteq \mathcal{V}$ is a set of designated truth values
- \mathcal{O} is a function assigning a *truth table* $\mathcal{V}^n \to P(\mathcal{V}) \setminus \{\emptyset\}$ to every n-ary connective \diamond of \mathcal{L}

In the context of Nmatrix $M = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, we often denote $\mathcal{O}(\diamond)$ by $\tilde{\diamond}$.²

²Lahav and Zohar, "Effective Semantics for the Modal Logics K and KT via Non-deterministic Matrices".

Example of Nmatrix for K

Definition

Nmatrix $M_K = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, with $\mathcal{V} = \{t, f, F, T\}$ $\mathcal{D} = \{t, T\}$ and where \mathcal{O} is defined by the following tables:

$x\tilde{\wedge}y$	Т	t	F	f	$x\tilde{\vee}y$	Т	t	F	f	X	$\tilde{\neg}_X$	X	$\Box x$
					Т								\mathcal{D}
t	\mathcal{D}	${\mathcal D}$	$\overline{\mathcal{D}}$	$\overline{\mathcal{D}}$	t	\mathcal{D}	${\mathcal D}$	${\mathcal D}$	${\mathcal D}$	t	$\overline{\mathcal{D}}$	t	$\overline{\mathcal{D}}$
-	_	_	_	$\overline{\mathcal{D}}$						-	\mathcal{D}		\mathcal{D}
f	$ \overline{\mathcal{D}}$	$\overline{\mathcal{D}}$	$\overline{\mathcal{D}}$	$\overline{\mathcal{D}}$	f	\mathcal{D}	\mathcal{D}	$\overline{\mathcal{D}}$	$\overline{\mathcal{D}}$	f	\mathcal{D}	f	$\overline{\mathcal{D}}$

The intuition behind these truth-values is the following:

- $v(\varphi) = f$ if φ doesn't hold in w and doesn't hold in some possible world:
- $v(\varphi) = t$ if φ holds in w but doesn't hold in some possible world;
- $v(\varphi) = F$ if φ doesn't hold in w, but holds in all possible worlds;
- $v(\varphi) = T$ if φ holds in w and holds in all possible worlds;

Legal valuations

Given $\mathcal{F} \subseteq \mathcal{L}$, then an \mathcal{F} -valuation $v : \mathcal{F} \to \mathcal{V}$ is M-legal if $v(\varphi) \in \mathsf{pos}\text{-val}(\varphi, M, v)$ for every formula $\varphi \in \mathcal{F}$ whose immediate subformulas are contained in \mathcal{F} , where $\mathsf{pos}\text{-val}(\varphi, M, v)$ is defined by:

- pos-val $(p, M, v) = \mathcal{V}$ for every atomic formula p.
- ② pos-val($\diamond(\psi_1,\ldots,\psi_n),M,v$) = $\tilde{\diamond}(v(\psi_1),\ldots,v(\psi_n))$ for every non-atomic formula $\diamond(\psi_1,\ldots,\psi_n)$.

Definitions of \models and \vdash

Definition

Let $\mathcal V$ be the set of truth-values and its proper subset $\mathcal D$ – the set of designated values. Consider a (possibly non-total) valuation $v:\mathcal L\to\mathcal V$ and a formula $\varphi\in\mathsf{Dom}(v)\subseteq\mathcal L$, then we write $v\models_{\mathcal D}\varphi$, if $v(\varphi)\in\mathcal D$. For $\Sigma\subseteq\mathsf{Dom}(v)$ we write $v\models_{\mathcal D}\Sigma$ if $v\models_{\mathcal D}\varphi$ for any $\varphi\in\Sigma$.

Definition

For a set $\mathbb V$ of valuations and sets $L,R\subseteq\mathcal L$ of formulas. We write $L\vdash_{\mathcal D}^{\mathbb V}R$ if for every $v\in\mathbb V$, $v\models_{\mathcal D}L$ implies $v\models_{\mathcal D}\varphi$ for some $\varphi\in R$. We write $\models_{\mathsf T}$ and $\vdash_{\mathsf T}^{\mathbb V}$ instead of $\models_{\mathsf T}$ and $\vdash_{\mathsf T}^{\mathbb V}$.

Counterexample

Consider formula $\neg\Box(p \land q) \lor (\Box p \land \Box q)$ and valuation:

- v(p) = v(q) = f
- $v(p \wedge q) = F$
- $v(\Box p) = v(\Box q) = v(\Box p \land \Box q) = \mathsf{F}$
- $v(\Box(p \land q)) = \mathsf{T}$
- $v(\neg\Box(p \land q)) = \mathsf{F}$
- $v(\neg\Box(p \land q) \lor (\Box p \land \Box q)) = \mathsf{F}$

Level valuations

Definition (Level valuations)

- $\mathbb{V}_{K}^{\mathcal{F},0} = \{ v \mid v \text{ is a } \mathsf{M}_{K}\text{-legal } \mathcal{F}\text{-valuation} \}$
- $\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m+1} = \left\{ v \in \mathbb{V}_{\mathbb{K}}^{\mathcal{F},m} \mid \forall \varphi \in \mathcal{F}. \ v^{-1}[\mathsf{TF}] \vdash_{\mathcal{D}}^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m}} \varphi \implies v(\varphi) \in \mathsf{TF} \right\}$ for $m \geq 0$.

G calculus

(WEAK)
$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$
 (ID) $\frac{\Gamma, \varphi \Rightarrow \varphi, \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ (CUT) $\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$ $\frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma \Rightarrow \Delta}$ ($\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ ($\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ ($\frac{\Gamma, \varphi \Rightarrow \varphi, \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ ($\frac{\Gamma, \varphi \Rightarrow \varphi, \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ ($\frac{\Gamma, \varphi \Rightarrow \varphi, \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$ ($\frac{\Gamma, \varphi, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta}$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

 $(\Rightarrow \lor) \frac{1 \Rightarrow \varphi, \psi, \Delta}{\Gamma \Rightarrow \varphi, \forall \psi, \Lambda}$

 $(\vee \Rightarrow) \frac{\mathsf{I}, \varphi \Rightarrow \Delta \quad \mathsf{I}, \psi \Rightarrow \Delta}{\mathsf{\Gamma}, \varphi \vee \psi \Rightarrow \Delta}$

Modal calculi

$$(K) \frac{\Gamma \Rightarrow \varphi}{\Box \Gamma \Rightarrow \Box \varphi}$$

$$(T) \frac{\varphi, \Gamma \Rightarrow \Delta}{\Box \varphi, \Gamma \Rightarrow \Delta}$$

$$(4) \ \frac{\Box \Gamma_1, \Gamma_2 \Rightarrow \varphi}{\Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \varphi}$$

We call
$$G_K = G + K$$
, $G_{K4} = G + 4$, $G_{S4} = G + T + 4$

Derivability

Definition

Given a sequent $\Gamma\Rightarrow\Delta$, by $\vdash_{\mathsf{G}_{34}}^{\mathcal{F},m}\Gamma\Rightarrow\Delta$ we mean that there is a derivation of the sequent $\Gamma\Rightarrow\Delta$ in G_{34} with 4-depth of m, where 4-depth of the derivation denotes the maximal number of (4) rule applications used in any branch of the derivation. For an ω -sequent $L\Rightarrow R$ we write $\Vdash_{\mathsf{G}_{34}}^{\mathcal{F},m}L\Rightarrow R$ if for some finite sub-sequent $\Gamma\Rightarrow\Delta$ of $L\Rightarrow R$, $\vdash_{\mathsf{G}_{-r}}^{\mathcal{F},m}\Gamma\Rightarrow\Delta$.

Results for S4

Nmatrix for S4

Definition

Nmatrix $M_{S4} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, with $\mathcal{V} = \{t, f, T\}$ $\mathcal{D} = \{t, T\}$ and where \mathcal{O} is defined by the following tables:

$x\tilde{\wedge}y$	Ť	t	f	$x\tilde{\vee}y$	Т	t	f	$X \mid \tilde{\neg} X$	$x \mid \tilde{\Box} x$
Т	\mathcal{D}	\mathcal{D}	{ f }	Т	\mathcal{D}	\mathcal{D}	\mathcal{D}	T { f }	t {f}
t	\mathcal{D}	${\mathcal D}$	$\{f\}$	t	\mathcal{D}	${\mathcal D}$	${\mathcal D}$	t {f}	f {f}
f	{ f }	$\{f\}$	$\{f\}$	f	\mathcal{D}	\mathcal{D}	$\{f\}$	$f \mid \mathcal{D}$	T {T}

Level valuations for M_{S4}

Definition (Level valuations)

- $\mathbb{V}_{\mathrm{S4}}^{\mathcal{F},0} = \{ v \mid v \text{ is a } \mathsf{M}_{\mathrm{S4}}\text{-legal } \mathcal{F}\text{-valuation} \}$
- $\mathbb{V}_{\mathtt{S4}}^{\mathcal{F},m+1} = \left\{ v \in \mathbb{V}_{\mathtt{S4}}^{\mathcal{F},m} \mid \forall \varphi \in \mathcal{F}. \ v^{-1}[\mathsf{T}] \vdash_{\mathcal{D}}^{\mathbb{V}_{\mathtt{S4}}^{\mathcal{F},m}} \varphi \implies v(\varphi) = \mathsf{T} \right\}$ for m > 0.

Soundness

Lemma (Soundness for (T))

Suppose that $\Delta \cup \Gamma \cup \{\varphi, \Box \varphi\} \subseteq \mathcal{F}$ and $\varphi, \Gamma \vdash_{\mathcal{D}}^{\mathbb{V}_{\mathsf{S4}}^{\mathcal{F}, m}} \Delta$. Then $\Box \varphi, \Gamma \vdash_{\mathcal{D}}^{\mathbb{V}_{\mathsf{S4}}^{\mathcal{F}, m}} \Delta$.

Lemma (Soundness for (4))

Suppose that $\Box \Gamma_1 \cup \Gamma_2 \cup \Box \Gamma_2 \cup \{\varphi, \Box \varphi\} \subseteq \mathcal{F}$ and $\Box \Gamma_1, \Gamma_2 \vdash_{\mathcal{D}}^{\mathbb{V}^{\mathcal{F}, m} - 1} \varphi$.

Then $\Box \Gamma_1, \Box \Gamma_2 \vdash^{\mathbb{V}^{\mathcal{F},m}_{\mathbb{S}^4}}_{\mathbb{D}} \Box \varphi$. For m > 0.

Completeness

For completeness one should provide a countermodel for an ω -sequence, that is not derivable.

Definition (Maximal and consistent ω -sequent)

Let $\mathcal{F} \subseteq \mathcal{L}$ and $m \geq 0$. A \mathcal{F} - ω -sequent $L \Rightarrow R$ is called:

- **1** \mathcal{F} -maximal if $\mathcal{F} \subseteq L \cup R$.

Countermodel

Definition

We denote
$$\mathbb{B}_{\mathcal{F}}^{X} = \{ \psi \in \mathcal{F} \mid \Box \psi \in X \}.$$

$$v(\mathcal{F}, L \Rightarrow R, m) = m = 0$$
 $m = 0$
 $\lambda \varphi. \begin{cases} \mathsf{T}, & \varphi \in L \land \Box \varphi \notin R \\ \mathsf{t}, & \varphi \in L \land \Box \varphi \in R \end{cases}$
 $\mathsf{f}, & \varphi \in R$

$$\lambda \varphi. \begin{cases} \mathsf{T}, & \varphi \in L \land \Vdash_{\mathsf{G}_{\mathtt{S}4}}^{\mathcal{F},m-1} \square \mathbb{B}_{\mathcal{F}}^{L} \Rightarrow \varphi \\ \mathsf{t}, & \varphi \in L \land \not \Vdash_{\mathsf{G}_{\mathtt{S}4}}^{\mathcal{F},m-1} \square \mathbb{B}_{\mathcal{F}}^{L} \Rightarrow \varphi \\ \mathsf{f}, & \varphi \in R \end{cases}$$

Completeness

Theorem (Completeness)

Let $\mathcal{F} \subseteq \mathcal{L}$ be closed under subformulas. Suppose $L \Rightarrow R$ is a $\langle \mathsf{G}_{\mathsf{S4}}, \mathcal{F}, m+1 \rangle$ -max-con ω -sequent, then there is a valuation $v \in \mathbb{V}_{\mathsf{S4}}^{\mathcal{F},m}$, such that $v \nvDash_{\mathcal{D}} L \Rightarrow R$.

Completeness lemmas

Lemma

Let $\mathcal{F} \subseteq \mathcal{L}$ be closed under subformulas. Given $L \Rightarrow R$ is a $\langle \mathsf{G}_{\mathsf{S4}}, \mathcal{F}, 0 \rangle$ -max-con ω -sequent. Then $v(\mathcal{F}, L \Rightarrow R, 0) \in \mathbb{V}_{\mathsf{S4}}^{\mathcal{F}, 0}$.

Lemma

Let $\mathcal{F} \subseteq \mathcal{L}$ be closed under subformulas. Given $L \Rightarrow R$ is a (G_{S4}, \mathcal{F}, m) -max-con ω -sequent. Then $v(\mathcal{F}, L \Rightarrow R, m) \in \mathbb{V}_{SA}^{\mathcal{F}, 0}$.

Lemma

Let $\mathcal{F} \subseteq \mathcal{L}$ be closed under subformulas. Given $L \Rightarrow R$, a $\langle \mathsf{G}_{\mathsf{S4}}, \mathcal{F}, \mathsf{m} \rangle$ -max-con ω -sequent. If for any $\mathcal{F} - \omega$ -sequent $\mathsf{L}' \Rightarrow \mathsf{R}'$ and for any k < m we have $L' \vdash_{\mathcal{D}}^{\mathbb{V}^{\mathcal{F},k}} R'$ implies $\Vdash_{G_{ca}}^{\mathcal{F},k} L' \Rightarrow R'$. Then $v(\mathcal{F}, L \Rightarrow R, m) \in \mathbb{V}_{SA}^{\mathcal{F}, m}$

Effectiveness

Algorithm

Algorithm 1 Deciding $\Gamma \vdash_{\mathcal{D}}^{\mathbb{V}_{54}} \varphi$.

- 1: $\mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})$
- 2: $m \leftarrow 3^{|\mathcal{F}|}$
- 3: for $v \in \mathbb{V}_{s_A}^{\mathcal{F},m}$ do
- 4: **if** $v \models_{\mathcal{D}} \Gamma$ and $v \not\models_{\mathcal{D}} \varphi$ **then**
- 5: **return** ("NO", v)
- 6: return "YES"

Lemma

For a finite set \mathcal{F} of formulas, $(\bigcap_{i<\omega}\mathbb{V}_{\mathrm{S4}}^{\mathcal{F},i}=)\mathbb{V}_{\mathrm{S4}}^{\mathcal{F}}=\mathbb{V}_{\mathrm{S4}}^{\mathcal{F},3^{|\mathcal{F}|}}$.

Extension

The algorithm is correct, but in applications we might need a construction of the countermodel. If $\Gamma \not\vdash^{\mathbb{V}_{S^4}}_{\mathcal{D}} \varphi$, then there is a $u \in \mathbb{V}_{S^4}$, such that $u \models_{\mathcal{D}} \Gamma$ and $u \nvDash_{\mathcal{D}} \varphi$. However, we don't know anything about the connection between u and v from the algorithm output.

This motivates us to investigate the existance of a total extension $v' \in \mathbb{V}_{S4}$, such that $v'|_{\mathcal{F}} = v$.

Kripke models correspondence

Kripke models

Definition

Given $\mathcal{F} \subseteq \mathcal{L}$ is closed under subformula and $v \in \mathbb{V}_{K}^{\mathcal{F}}$ and a pointed Kripke model $\langle \mathfrak{M}, x \rangle$. We write $\langle \mathfrak{M}, x \rangle \dashv \vdash \langle \mathcal{F}, v \rangle$ if for any $\varphi \in \mathcal{F}$

- $v(\varphi) = t$ iff. $\mathfrak{M}, x \models \varphi$ and there is an $y \in W$, such that xRy and $\mathfrak{M}, y \nvDash \varphi$
- $v(\varphi) = f$ iff. $\mathfrak{M}, x \nvDash \varphi$ and there is an $y \in W$, such that xRy and $\mathfrak{M}, y \nvDash \varphi$
- $v(\varphi) = T$ iff. $\mathfrak{M}, x \models \varphi$ and for any $y \in W$ such that $xRy, \mathfrak{M}, y \models \varphi$
- $v(\varphi) = F$ iff. $\mathfrak{M}, x \nvDash \varphi$ and for any $y \in W$ such that xRy, $\mathfrak{M}, y \models \varphi$

Summary

Summary

- completeness and soundeness were established
- does extension exist?
- how to build a kripke model, corresponding to a valuation?

Kearns, John T. "Modal Semantics without Possible Worlds". In: J. Symb. Log. 46.1 (1981), pp. 77–86.

Lahay, Ori and Yoni Zohar. "Effective Semantics for the Modal Logics K and KT via Non-deterministic Matrices". In: Automated Reasoning -11th International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings. Ed. by Jasmin Blanchette, Laura Kovács, and Dirk Pattinson. Vol. 13385. Lecture Notes in Computer Science.

Springer, 2022, pp. 468-485. DOI:

10.1007/978-3-031-10769-6\ 28. URL:

https://doi.org/10.1007/978-3-031-10769-6_28.

